Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Votamatic Predicted the Presidential Election Results with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Votamatic Predicted the Presidential Election Results with R
AnalyticsNews

Votamatic Predicted the Presidential Election Results with R

DavidMSmith
DavidMSmith
4 Min Read
SHARE

While Nate Silver got a lot of the attention for correctly forecasting the US presidential election, other forecasters were just as succesful.

While Nate Silver got a lot of the attention for correctly forecasting the US presidential election, other forecasters were just as succesful. Drew Linzer used the R language to build the statistical model behind votamatic.org, and was able to predict the outcome of the election months before most pundits.

Drew’s model initially relied mostly on fundamental quantities: the president’s net approval-disapproval rating in June, the percent change in GDP from Q1 to Q2 of 2012, and whether the incumbent party has held the presidency for two or more terms. On that basis, Drew forecast on June 23 that the outcome (in electoral college votes) would be Obama 332 votes, Romney 206. Over time, the model used Bayesian statistics to gradually incorporate real-time polling data, and used smoothing methods to account for the fact that many state polls were sporadic. Nonetheless, the forecast never changed much, and remained around 332:206 right up to election day:

Votamatic
The final election result? Obama 332, Romney 206. 

More Read

5 Ways To Improve Your Business Skills with Data Analytics
Getting to Enterprise Application 2.0
Is the Instant-On Enterprise Right for You?
So What Is Prescriptive Analytics?
Blogs are Dead!?! – Not Among Gen Y

Drew described his methodology in an interview with the LA Times:

On Nov. 6, I predicted that Obama would win 332 electoral votes, with 206 for Romney. But I also predicted the exact same outcome on June 23, and the prediction barely budged through election day.

How is this possible? Statistics. I did it by systematically combining information from long-term historical factors — economic growth, presidential popularity and incumbency status — with the results of state-level public opinion polls. The political and economic “fundamentals” of the race indicated at the outset that Obama was on track to win reelection. The polls never contradicted this, even after the drop in support for Obama following the first presidential debate. In fact, state-level voter preferences were remarkably stable this year; varying by no more than 2 or 3 percentage points over the entire campaign (as compared to the 5% to 10% swings in 2008).

The actual mechanics of my forecasts were performed using a statistical model that I developed and posted on my website, votamatic.org. While quantitative election forecasting is still an emerging area, many analysts were able to predict the result on the day of the election by aggregating the polls. The challenge remains to improve estimates of the outcome early in the race, and use this information to better understand what campaigns can accomplish and how voters make up their minds.

He also shared with me that he used R (and his polCA package for latent class analysis) to create the entire forecast:

Everything’s done in R — data processing and graphics — and the model is fitted using WinBUGS. The website is just a WordPress blog that automatically pulls the R image files from a public dropbox.

(That’s a neat trick for sharing graphics from R, by the way: write a script that writes R images to a local DropBox folder, and let DropBox take care of the web publishing by simply linking to the online DropBox file.)

If you’re near San Francisco, Drew will be giving a talk to the Bay Area R User Group on February 12.

TAGGED:Bayesian statisticsDrew LinzerNate Silverpresidential election resultsr languagevotamatic.org
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

NCAA Data Visualizer for March Madness Face-Offs

2 Min Read

Lots of Data Does Not Equal “Big Data”

7 Min Read

10 R Packages Every Data Scientist Should Know About

1 Min Read
data science online education
R Programming Language

Data Science Education Gets Personal

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?