Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Will Dwinnell: 6 Reasons You Hired the Wrong Data Miner
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Will Dwinnell: 6 Reasons You Hired the Wrong Data Miner
Analytics

Will Dwinnell: 6 Reasons You Hired the Wrong Data Miner

DeanAbbott
DeanAbbott
4 Min Read
SHARE

By Will Dwinnell

By Will Dwinnell

As is in any discipline, talent within data mining community varies greatly.  Generally, business people and others who hire and manage technical specialists like data miners are not themselves technical experts.  This makes it difficult to evaluate the performance of data miners, so this posting is a short list of possible deficiencies in a data miner’s performance.  Hopefully, this will spare some heartache in the coming year.  Merry Christmas!

1. The data miner has little or no programming skill.

More Read

business organizations developing sense of data
How Leading Businesses Organize and Make Sense of Data
Book Review: Social Media Analytics by Marshall Sponder
Infinite Analytics
The Growing Role of Analytics in Product Development
How Is Mobile Technology Impacting the Food and Beverage Supply Chain?

Most work environments require someone to extract and prepare the data.  The more of this process which the data miner can accomplish, the less her dependence on others.  Even in ideal situations with prepared analytical data tables, the data miner who can program can wring more from the data than her counterpart who cannot (think: data transformations, re-coding, etc.).  Likewise, when her predictive model is to be deployed in a production system, it helps if the data miner can provide code as near to finished as possible.

2. The data miner is unable to communicate effectively with non-data miners.

Life is not all statistics: Data mining results must be communicated to colleagues with little or no background in math.  If other people do not understand the analysis, they will not appreciate its significance and are unlikely to act on it.  The data miner who can express himself clearly to a variety of audiences (internal customers, management, regulators, the press, etc.) is of greater value to the organization than his counterpart who cannot.  The data miner should should receive questions eagerly.

3. The data miner never does anything new.

If the data miner always approaches new problems with the same solution, something is wrong.  She should be, at least occasionally, suggesting new techniques or ways of looking at problems.  This does not require that new ideas be fancy: Much useful work can be done with basic summary statistics.  It is the way they are applied that matters.

4. The data miner cannot explain what they’ve done.

Data mining is a subtle craft: there are many pitfalls and important aspects of statistics and probability are counter-intuitive.  Nonetheless, the data miner who cannot provide at least a glimpse into the specifics of what they’ve done and why, is not doing all he might for the organization.  Managers want to understand why so many observations are needed for analysis (after all, they pay for those observations), and the data miner should be able to provide some justification for his decisions.

5. The data miner does not establish the practical benefit of his work.

A data miner who cannot connect the numbers to reality is working in a vacuum and is not helping her manager (team, company, etc.) to assess or utilize her work product.  Likewise, there’s a good chance that she is pursuing technical targets rather than practical ones.  Improving p-values, accuracy, AUC, etc. may or may not improve profit (retention, market share, etc.).

6. The data miner never challenges you.

The data miner has a unique view of the organization and its environment.  The data miner works on a landscape of data which few of his coworkers ever see, and he is less likely to be blinded by industry prejudices.  It is improbable that he will agree with his colleagues 100% of the time.  If the data miner never challenges assumptions (business practices, conclusions, etc.), then something is wrong.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

CMOs use big data for better digital marketing strategies
Big Data

5 Ways CMOs Must Exploit the Benefits of Data Analytics

11 Min Read
Image
Predictive Analytics

Why Telcos Can No Longer Rely on Traditional Machine Data Analytics to Deliver High Quality Service

4 Min Read

Our work attempts to predict patient response to a combination…

1 Min Read

Predictive analytics panel at Business Analytics Summit

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?