Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Quality: Opinions and Impressions Matter the Most
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Data Quality: Opinions and Impressions Matter the Most
Data QualityTransparency

Data Quality: Opinions and Impressions Matter the Most

Raju Bodapati
Raju Bodapati
3 Min Read
SHARE

The perception of quality and the reliability of data assets can change with time. It only takes one incident or error for someone to doubt the information on one’s neatly printed payslip (which is almost always correct.) That one mistake can drive someone to verify every subsequent payslip. It is easy to imagine scenarios where a single bad master data record can disturb a well related high quality data asset. Bad perceptions and negative user opinions can drastically reduce the effective usage of even the most reliable and well integrated data assets.

The perception of quality and the reliability of data assets can change with time. It only takes one incident or error for someone to doubt the information on one’s neatly printed payslip (which is almost always correct.) That one mistake can drive someone to verify every subsequent payslip. It is easy to imagine scenarios where a single bad master data record can disturb a well related high quality data asset. Bad perceptions and negative user opinions can drastically reduce the effective usage of even the most reliable and well integrated data assets.

In Gerald M. Weinberg’s article Agile and the Definition of Quality, the author details how quality can be quite relative and abstract. He argues that the definition of quality is more emotionally and politically driven and is more of a relative thing to individuals.

Putting these thoughts into the data quality perspective, the following bullet points stand tall:

More Read

big data
The Journey from Big Data to Big Promise
Man vs. Machine Contests: Forget “Level” Playing Fields
Business People Are Dumb On Average(s)
DQ-Tip: “There is no such thing as data accuracy…”
Global Hospitals Embark On A Worldwide Medical Data Initiative
  • Data quality is to be driven from the end users’ point of view – while standards, rules and infrastructure best practices to store and retrieve data enable good data quality, the focus on the ultimate consumers of data should not be lost.
  • Opinions and impressions on data reliability counts – often in organizations, people spread the stories around severity 1 tickets especially if they are related to the reliability of data. History of pains caused by past incidents due to bad data qualityare fresh in the minds of the people affected. Before anyone can trust and reliabilty of the data, the fears or past impressions have to be addressed.
  • Insight into active diverse views of data by participating data consumers – data quality initiatives should encompass frequent examination of how the organizational data assets are seen from many diverse eyes of the end users. The program needs to know which data is most critical, frequently accessed, least understood and depended up on to make decisions.

Overall, data as an asset quickly becomes a liability when it is not used by anyone. So, the opinions, impressions and confidence of the consumers on the organizational data is perhaps the single most critical aspect for a good data quality program.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Dilbert, Data Quality, Rabbits, and #FollowFriday

8 Min Read

What’s up with Watson?: Responses to comments in Wall Street Journal

6 Min Read

Flip that Data!

6 Min Read
Image
AnalyticsBig DataData MiningData QualityPredictive AnalyticsSocial Data

The True Vision of Big Data in Healthcare

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?