Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Decision Trees
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Decision Trees
Uncategorized

Decision Trees

Editor SDC
Editor SDC
8 Min Read
SHARE

Machine learning is about automatically finding patterns in data. In trading systems we are interested in finding all the patterns and then choosing the ones that usually precede price increases (or anything else you can find a way to profit from).

Innovation in the field comes from developing new pattern identification algorithms. Typically, these algorithms function similarly so you can compare the pros and cons of each and create a modular system in which you can swap them out. Each algorithm makes certain assumptions that influence the applications they are appropriate for. Financial market data is highly noisy, non-stationary, and even the noise is heterogeneous. This is different than, say, medical diagnostic data, where the goal is to automatically diagnose a patient based on their symptoms and health history.

In the past, I looked at neural networks and support vector machines. These are the algorithms that seemed applicable to trading. A few others which seem less powerful: linear regression, naïve bayes, and nearest neighbors. (Sadly, most big institutional factor models are based on linear regression.)

Now take a step back. Consider how a stock screener works…

More Read

Image
The Biggest Contradiction of Big Data
Everything is a Platform
Five Good Things
Does Your Company Have Energy Intelligence?
Check Out TunkRank.com!


Machine learning is about automatically finding patterns in data. In trading systems we are interested in finding all the patterns and then choosing the ones that usually precede price increases (or anything else you can find a way to profit from).

Innovation in the field comes from developing new pattern identification algorithms. Typically, these algorithms function similarly so you can compare the pros and cons of each and create a modular system in which you can swap them out. Each algorithm makes certain assumptions that influence the applications they are appropriate for. Financial market data is highly noisy, non-stationary, and even the noise is heterogeneous. This is different than, say, medical diagnostic data, where the goal is to automatically diagnose a patient based on their symptoms and health history.

In the past, I looked at neural networks and support vector machines. These are the algorithms that seemed applicable to trading. A few others which seem less powerful: linear regression, naïve bayes, and nearest neighbors. (Sadly, most big institutional factor models are based on linear regression.)

Now take a step back. Consider how a stock screener works. First you say, “keep a stock if its P/E is under 15.” Then you add another condition: “Only keep those with debt/equity less than 1.0.” Then you might add one more filter: “Of those, only keep the stocks with market cap under $500 million.” Every ticker is passed through this list of conditions and some are rejected at each step. You hope the remaining stocks are good values and will outperform the market. The problem is that you don’t really know when you make a screen by hand. Factor model software, used by many institutional investors, will automatically determine how useful a certain criteria is by using simple linear regression and backtesting.

What’s the problem with linear regression? This is a linear relationship: y=mx+b. It’s great for modeling something like, how much will a company’s taxes increase if the profit goes up by $100? m will equal the tax rate, .35. But a linear relationship can’t precisely model all sorts of things we regularly see. Let’s say you want to model Facebook and other social networks’ profitability based on the number of hits their sites get each day. There is a well-documented network effect where going from the second most popular to first is much more significant than going from fifth to fourth. A linear model could only capture part of this effect. Another situation would be estimating someone’s weight by looking at how tall they are. Weight is roughly proportional to volume which grows as the cube of height, so linear regression would fail here, too.

Now I’ll explain the decision tree algorithm. I’ll build on these two thought experiments and compare it to support vector machines and neural nets.

A decision tree is just like the screening example, but more sophisticated. The screener is not a tree in the sense that it has only two outcomes: keep or reject. The decision tree keeps analyzing the “rejected” ones. So instead of saying, “throw away the ones with P/E over 15”, the decision tree would then analyze those further, possibly adding in some typical growth criteria, like “keep those with analysts’ earnings estimates of at least 20%”. But intuitively you should think of it as a sophisticated automatic screener. Wikipedia has a good little example; the graphic below is copied from there to make the note more interesting.

You might wonder how it can work automatically. It’s a product of how incredibly fast computers are. Let’s say you have three variables, P/E, debt/equity, and market cap.

1) The algorithm randomly selects 1, say P/E.
2) The algorithm loops through many values for the P/E, say {1,2,3,4,5,6,7,8,9,10,…,30,31,…,max}, where max = the maximum P/E of all stocks being considered, and determines the P/E number that best splits the data into out-performers and under-performers. (Other “loss functions” are also common) This is very computationally demanding.
3) Then the algorithm repeats (recursively) on each of the subsets determined by the P/E split. It may divide them again by P/E or maybe by debt/equity or market cap.
4) Once the tree has many branches and the data is reasonably well classified (this is an important parameter which I won’t go into depth about here), you’re done training and you can start using it for actual prediction on new data.

Here’s the simplest example of how a decision tree can introduce nonlinearity: First it says companies with a P/E <> 3 are good. So now on a number line of P/Es, it goes bad-good-bad. It turns out that linear models cannot learn this relationship, and support vector machines can, with some care by the programmer. (Our analysis can be justified by imagining that P/E < 15=”” means=”” good=”” value,=”” but=”” p/e=””>< 3=”” means=”” screwy=”” accounting=”” and=”” bad=”” data,=”” so=”” you=”” eliminate=””>

Trees have other nice properties including they handle missing data and outliers well, they can mix categorical and numeric inputs, and the trained learner is easier to interpret.

In another note soon, I’ll explain why I decided to build a system based on a further enhancement of this decision tree concept: the “random forest” or tree bagging. Obviously decision trees already have advantages, but I’ll go into the weaknesses and further improvements and explain how I built and backtested the system.

TAGGED:decision treesmachine learning
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

conversation intelligence software
Machine Learning

Machine Learning Aids Marketing With Conversation Intelligence Software

7 Min Read
machine learning and photography
Machine Learning

Image Tracking And Other Machine Learning Benefits For Photography

6 Min Read
machine learning tools
Machine Learning

Can Online Machine Learning Tools Help with Personal Financial Management?

6 Min Read
machine learning AI for retailers
Artificial IntelligenceMachine Learning

How Retailers are Harnessing Machine Learning and Predictive Analytics

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?