Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Science shows maturity at 2012 Summit.
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Data Science shows maturity at 2012 Summit.
Data Mining

Data Science shows maturity at 2012 Summit.

DavidMSmith
DavidMSmith
3 Min Read
SHARE

As a discipline, Data Science is growing up fast. That’s my key takeaway from the 2012 Data Science Summit.

Data Science Summit 2012

As a discipline, Data Science is growing up fast. That’s my key takeaway from the 2012 Data Science Summit.

More Read

Image
Who’s in Charge of Your Data?
Realtime Data Pipelines
Examining PMML 4.0 – Part I: Pre-Processing
4 Data-Driven Approaches To Bolster Email Deliverability
Big Data and the Big Opportunity to Reform Education

Data Science Summit 2012

At the inaugural 2011 Data Science Summit (you can see some highlights in this recap video), the focus was on the Big Data part of Data Science: issues with streaming data, how to store big data, technology platforms, that kind of thing. This year’s summit was much more focused on the “Science” part of Data Science: applications of Big Data, and statistical issues related to the analysis of Big Data. A few examples:

  • Nate Silver (political forecaster for the NYT) talked not just about building models and making predictions, but also the importance of, in his words, “embracing uncertaintly”. A prediction often isn’t useful without an assessment of its uncertaintly (or risk). He gave this real-life example: a flood-level prediction of 49 feet doesn’t mean a city can rest easy because the levees are 51 feet high. The weather service failed to mention that there was a plus-or-minus 9 feet margin of error to that prediction, or about a 50-50 chance the city would be flooded. (It was.)
  • Michael Chui (author of the McKinsey Big Data report) said that schools should be teaching more Statistics, and less Calculus, so that graduates have a better grasp of issues like sampling and selection bias.
  • Michael Brown (CTO of ComScore) talked about the need to understand the impact of recall bias and outliers.
  • Jeremy Howard (Chief Data Scientist of Kaggle) warned of the dangers of observation bias inherent in “data exhaust”, and extolled the benefits of statistical experiments to distringuish between causality and correlation.
  • Tony Jebara (co-founder of Sense Networks) expressed the need for the focus of predictive analytics to graduate from mere accuracy to making models interpretable, and predictions actionable.
  • Hadley Wickham (R package author and educator) described the variety of application areas for Data Science, from cheesemakers to airport designers, and from sports teams to cruise lines. 

These are all important statistical issues, which until recently have had a back-seat to the technological and operational issues of data science. It’s great to see the practice maturing, and this new focus will lead to data applications which are not just more powerful, but more reliable and more impactful as well. Data Science has come of Statistical age.

TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

using data-driven cybersecurity to fight ACH fraud
Data Science

Remote IT and Cybersecurity Careers for Data Scientists

9 Min Read

Protecting Your Data From Attackers Using Top Spy Gear Technology

7 Min Read
big data analytics in elearning
Big Data

Big Data Analytics in eLearning: Aspects Everyone Should Know

8 Min Read
Ethereum cryptocurrency
AnalyticsBlockchainExclusivePredictive Analytics

Is Predictive Analytics Setting The Stage For An Ethereum Price Increase?

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?