Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Models are not Statistical Models — JT on EDM
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Models are not Statistical Models — JT on EDM
AnalyticsStatistics

Predictive Models are not Statistical Models — JT on EDM

DeanAbbott
DeanAbbott
3 Min Read
SHARE

My friend and colleague James Taylor asked me last week to comment on a question regarding statistics vs. predictive analytics. The bulk of my reply is on James’ blog; my fully reply is here, re-worked from my initial response to clarify some points further.

My friend and colleague James Taylor asked me last week to comment on a question regarding statistics vs. predictive analytics. The bulk of my reply is on James’ blog; my fully reply is here, re-worked from my initial response to clarify some points further.

I have always love reading the green “Sage” books, such as Understanding Regression Assumptions (Quantitative Applications in the Social Sciences)
or Missing Data (Quantitative Applications in the Social Sciences) because they are brief, cover a single topic, and are well-written. As a data miner though, I am also somewhat amused reading them because they are obviously written by statisticians with the mindset that the model is king. This means that we either pre-specify a model (the hypothesis) or require the model be fully interpretable, fully representing the process we are modeling. When the model is king, it’s as if there is a model in the ether that we as modelers must find, and if we get coefficients in the model “wrong”, or if the model errors are “wrong”, we have to rebuild the data and then the model to get it all right.

In data mining and predictive analytics, the data is king. These models often impute the models from the data (decision trees do this), or even if they only fit coefficients (like neural networks), it’s the accuracy that matters rather than the coefficients. Often, in the data mining world, we won’t have to explain precisely why individuals behave as they do so long as we can explain generally how they will behave. Model interpretation is often related to describing trends (sensitivity or importance of variables).

More Read

Social Analytics: New Uses of Social Intelligence
Big Data Helps You Use LinkedIn Sponsored Content Competitively
Swimming with the Smarter Customer: The Speedo International Story
First Look – Eagle Eye Analytics
Amazon Wants to Use Predictive Analytics to Offer Anticipatory Shipping

I have always found David Hand’s summaries of the two disciplines very useful, such as this one here; I found that he had a healthy respect for both disciplines.

This post was first posted on Predictive Models are not Statistical Models — JT on EDM

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Text Analytics for Telecommunications – Part 2

5 Min Read

Sentiment, Summits and Strategies: A Conversation with Seth Grimes

13 Min Read

Business Analytics and Optimization for the Intelligent…

3 Min Read

Big Data, Big Money and Big Opportunities

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?