Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Analyzing big data with Revolution R Enterprise
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Analyzing big data with Revolution R Enterprise
AnalyticsData MiningR Programming Language

Analyzing big data with Revolution R Enterprise

DavidMSmith
DavidMSmith
3 Min Read
SHARE

This post from Sherry LaMonica is the first in a series from members of the Revolution Analytics Engineering team — ed.

Do you know about the big data capabilities in the RevoScaleR package, included with every Revolution R Enterprise installation?

This post from Sherry LaMonica is the first in a series from members of the Revolution Analytics Engineering team — ed.

More Read

Tactical Analytics: Wandering Off the Path One Inch at a Time
R and the Next Big Thing
How AI and Analytics Can Save Energy Small Businesses
First Look – Angoss 7
Running through a data analyst’s mind late at night

Do you know about the big data capabilities in the RevoScaleR package, included with every Revolution R Enterprise installation?

RevoScaleR provides a framework for fast and efficient multi-core processing of large data sets. You can visualize and model data sets with millions of records on your local machine using syntax like:

  myLinMod <- rxLinMod(y ~ x + z, data=myData)

Some highlights of the RevoScaleR package include:

  • The XDF file format, a binary file format with an R interface that optimizes row and column processing and analysis.
  • Data transformation tools for exploring and preparing large data sets for analysis.
  • Statistical algorithms optimized for large data sets.
Most users will want to proceed from data import to data analysis in a three-step process.  Below are some of the frequently used RevoScaleR functions in each of these steps:
 
Step 1: Import the data you want to analyze from external file:
rxTextToXdf() – Import data to .xdf format from a delimited text file.
rxImportToXdf() – Import data from a data source, such as fixed-format text or SAS data (use together with the RxTextData and RxSasData functions)
rxDataStepXdf() – Transform your data and select subsets of variables and/or rows for data exploration and analysis.
 
Step 2: Explore and Transform the Data:
rxSummary(), rxCube, rxCrossTabs() – Obtain summary statistics and compute crosstabulations.
rxHistogram() – Plot a histogram of a variable in an .xdf file.
rxLinePlot() – Create a line or scatterplot from data in an .xdf file or the results from rxCube.
 
Step 3: Perform model fitting and additional statistical analysis on data:

rxLinMod() – Fit a linear regression model to data in an .xdf file.
rxLogit() – Fit a logistic regression model to data in an .xdf file.
rxPredict() – Compute predictions and residuals from a linear or logistic regeression fit.
rxCovCor() – Compute the covariance/correlation matrix for a linear or logistic regression model.
 
The RevoScaleR ‘Getting Started Guide’ contains several examples of how to analyze your data with the RevoScaleR package. You can open the PDF document from within Revolution R Enterprise for Windows by going to the ‘Help’ menu and selecting the option ‘R Manuals(PDF)’ from the menu. This will open the PDF portfolio, the third document listed is ‘RevoScaleRGetStart.pdf’.
 
We look forward to hearing about your experience with using RevoScaleR. Contact support@revolutionanalytics.com with any questions or feedback.
TAGGED:data analysis
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Data Mining Improved Company’s Revenue By 187%

5 Min Read

Tufte Shares Wisdom for Data Presenters

4 Min Read
first data scientist Norman Nie
AnalyticsBig DataHadoop

The First Data Scientist on the Evolution of Data Science

11 Min Read

Getting On the Same Page – Marketing and the Business

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?