Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Law of Averages
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > The Law of Averages
Data Mining

The Law of Averages

TeradataAusNZ
TeradataAusNZ
4 Min Read
SHARE

Flaw-of-Averages

 

Flaw-of-Averages

More Read

Using decision management to prepare for an unknown future
Physicists, models, and the credit crisis
Harvesting Data: What Is the Mood in the World?
Implementing Decision Tree Bagging models in R: A Walkthrough
Decision Management, Tom Davenport and the New BI

 

Here is a simple business problem. A 2-lane hand car wash business needs to determine the right number of people it should have to provide adequate service.  The business can employ between 2 and 8 people at a time depending on number of cars waiting. The problem is to determine how many service people to have at any given time because there would be ups and downs in the number of cars arriving, service times, service person availability etc.

Well, one easy way is to keep record of the number of cars, their arrival times, and service person’s availability, hours worked etc. then determine on average, how many service people should be required. Easy, right?  Err. Not really. It is actually a fairly complex stochastic operations research problem. You need all of the records to determine reliable car arrival rates, service times, absent records, disruptions, bottlenecks, weather, and a number of other pieces of information to have a reliable estimate to dynamically plan and allocate resources.  Yes, you can use averages but expect to get average results only. That is the law of averages. Sometimes too much and sometimes too little but on an average it will look right. There may be too many cars and not enough service people or too many people but not enough cars!

I mention this because recently I was made aware that the mining industry has very simple analytical problems for equipment operations and maintenance that are dealt with by using ‘simple’ calculations with average values. Really? Because when I think about the problem and the factors involved (including machine run times, breakdowns, maintenance history, operators and their productivity data, and a large number of environmental factors) that may impact this complex dynamic environment, it sounds pretty complex to me.

Sure, one can always use average numbers to solve these problems but as the law of averages dictates, the solution will be short of any meaningful outcome because most of the times it will be either above or below the mark. The proper way will be to have all of the detailed level data that may potentially impact the equipment operations or maintenance and use advanced analytics to get estimates with much higher confidence than mere averages.

That is the way Teradata customers typically will approach and solve their business problems. Get all of the relevant data at the most granular level in one place and use analytics to find the most suitable solution. How are you handling your business problems? Do average values give you as good a solution as you could have with integrated and detailed data? I would be interested to hear about any similar business challenges where average values are a good enough solution that you do not require detailed data.

 

Najmul Qureshi

Caption: Cartoon by Jeff Danziger DanzigerCartoons.com

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Self-Promoters Score! Why Analysts Can’t be Shy Anymore

9 Min Read

Storing and Mapping Your Life in 3D

2 Min Read

Make More Out of Product Reviews: Take them Offline too!

4 Min Read

IBM: Numerati paradise

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?