Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data moves up the stack
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Big Data moves up the stack
Uncategorized

Big Data moves up the stack

TonyBain
TonyBain
3 Min Read
SHARE
Data Management is an area that I work in and follow with a passion.  “Big Data” is really the bleeding edge of this, focusing on the cloud and the requirements for the high end of scale, performance and data volume. 
Data Management is an area that I work in and follow with a passion.  “Big Data” is really the bleeding edge of this, focusing on the cloud and the requirements for the high end of scale, performance and data volume. 

The Big Data field itself is rapidly evolving, maturing and broadening in focus.  It is still going through the process of finding itself, working out what it is supposed to be.  While 12 months ago Big Data was, to me at least, a categorization for the platforms that provided data scalability I think that is less so today.  Big Data is becoming more about the layers built on top of those platforms and the value added to the data in those layers.  This is not an unexpected move, it follows path in the direction of the data-as-a-service vision that I and others have shared for some time.

I see this shift being reflected in the companies that are finding success.  While true killer innovation will almost always find funding, killer innovation today often has to be more than just n+1 scalability.  Some companies I know that have built “faster transaction processing” or “more scalable analytics” have found getting a foothold difficult in a crowded market.  The “more scalable” mantra on its own is starting to not be enough to gain and keep attention.  So many platforms in both transaction processing and analytics (both SQL & NoSQL) are delivering high scalability today.  Many of these are open source, and on the closed source side of the fence it appears consolidation needs to happen for sustainability.  Some has happened already and I expect more will follow. 

Image by Délirante bestiole [Lumpen river] via Flickr

White moutainI think moving up the stack provides some clear air.  A unique point of difference based around the value added to the underlying data seems to me to offer a more clearly defined proposition.  A unique Big Data platform may be built in the process, but how that platform is applied to enrich information can be more interesting than the platform itself.

Don’t get me wrong.  Killer innovation in Big Data layers form the hardware to the user are important (flash, hadoop, MPP etc) and should continue to exist in their own right.  But a difficulty is launching a Big Data platform in a busy space means the platform may only get a small following.  And platforms with small followings, I think, are difficult to sustain.

TAGGED:data management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

tips for companies coming up with data management strategies
Data Management

Steps Companies Should Take to Come Up Data Management Processes

8 Min Read
google nexus BI lesson
Uncategorized

4 Retail BI Lessons to Learn from Google’s Nexus Fail

5 Min Read

Rating agency data: Getting gamed

3 Min Read
trusted data management
Artificial IntelligenceBig DataData Management

The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration

13 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?