Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Modeling for E-Mail Marketing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Predictive Modeling for E-Mail Marketing
Business IntelligenceCRMData MiningPredictive Analytics

Predictive Modeling for E-Mail Marketing

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Copyright © 2009 James Taylor. Visit the original article at Predictive Modeling for E-Mail Marketing.Syndicated from Smart Data Collective
Arthur Hughes (author of Strategic Database Marketing) and Anna Lu of e-Dialog.com presented on predictive modeling for e-mail marketing. Arthur has been developing databases for database marketing for 30 years or so. Initially he focused on databases […]


Copyright © 2009 James Taylor. Visit the original article at Predictive Modeling for E-Mail Marketing.

Syndicated from Smart Data Collective

Arthur Hughes (author of Strategic Database Marketing) and Anna Lu of e-Dialog.com presented on predictive modeling for e-mail marketing. Arthur has been developing databases for database marketing for 30 years or so. Initially he focused on databases but found that people could not use them to make money and that led him to his focus on database marketing.

More Read

The Scourge of Data Silos
Very good article on the value of Corporate Performance Management by PwC
General Electric ‘s breach of the spirit and letter of integrity
re: “Thoughts on Understanding Neural Networks”
IB Olympiad System Outline

E-mail marketing is often considered as only a way to drive online sales but it also drives offline sales. E-mail is not recognized as the potential marketing powerhouse it is. E-mail produces far better returns than other direct mail and 4x the offline sales than online but remains siloed as part of online sales. In addition, data shows that multi-channel customers are more profitable than single channel customers and e-mail helps with all channels. Yet too many e-mail marketing budgets are departments are just lost among the online marketing department.

Predictive modeling does not get used in emails because of the cost difference – where direct mail is $600 or more CPM, email is $8 CPM and so the value of analytics seems lower. However, email open rates are down to 16% and a recession will simply cause still more email to be used (because its cheap) so open rates will continue to fall and subscription rates will do likewise – and unsubcribing costs money. E-mail marketing must get smarter to avoid this fate.

Anna then introduced a case study – a frequent flyer program sending out semi-monthly emails. Opt-out members were about 18% but accounting for nearly 30% of revenue – they were better customers. Furthermore these were mostly recent unsubscriptions.

To solve the problem they built a model using CHAID. They had all the member data plus all the email behavior information like opens, clicks (and what kind of link they clicked). They found some good predictors among the attributes. Next they looked at the revenue from the members and found that the top 10% generated 67% of revenue with the top 20% generating 84%. Clearly retaining the top 20% was going to be key while the bottom 50% contributed almost nothing.

They developed a risk-revenue matrix, mapping the lifetime value and the likelihood to defect. Clearly the ones who are valuable and likely to leave are the highest priority. Now these folks can be targeted. When they did this with Cingular in the past they were able to reduce churn by 26% and retaining millions of dollars.

The second example was an e-tailer, specifically an off-price name-brand retailer. Email is their single largest channel and their most important retention tool – linked to 40% of their revenue. Have lots of data like attrition, sales, seasonal purchases, departments shopped, number and value of items purchased etc. 50% of their revenue comes from their loyalty club (that has a fee) even though it only had 1.8% of the email list as members. So how to find potential loyalty club members in the other 98.2%?

Used logistic regression to build a model based on about 10 predictor variables such as lifetime purchases, email source (internal or third party), opens, clicks etc. For instance, total purchases and months since first purchase contributed positively but more recent email acquisitions were better. With this information could afford to spend money getting these high-potential folks to join the loyalty program. Of course you also do some testing with a random sample to see how much better the results are than random.

Besides the improved positive results, you need to value the lower unsubscribe rates. For many companies a subscriber has a value of $5-$15 – they must be replaced and this can cost say $14! If a mailing not only has less positive effects but also drives people away (because the customer feels they are not understood by the company) then the cost of replacing the subscribers could exceed the value gained making the overall email campaign a net value destroyer! As I like to say, people respond to decision (emails in this case) as though they are personal and deliberate so make sure they are!

Arthur is a great presenter and this presentation was terrific.

Previous


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

business intelligence
Business IntelligenceIT

Moving Beyond Common SMB BI Implementation Knowledge Challenges

3 Min Read

The problem is green-screen, mainframe-based ideas of “process”

4 Min Read

Forecasting: It’s What’s Hot in Supply Chain Analytics

6 Min Read

Check out this new technology article portal

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?