Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Using R to analyze lifetimes of business systems
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Using R to analyze lifetimes of business systems
Uncategorized

Using R to analyze lifetimes of business systems

DavidMSmith
DavidMSmith
5 Min Read
SHARE

Here’s an interesting use of R outside the “usual” statistics domains: using advanced analytics to estimate how long a typical content-management system (CMS) remains in use. Some industry analysts cite a lifetime of 3 years, but can that estimate be backed up with data? To investigate, Michael Marth uses the customer records from a CMS provider, and looks at how long their support contracts were maintained (as a proxy for the system actually being in use). These data require a special kind of analysis, so lets take a look in detail. In the data, some of the contracts are still…

Here's an interesting use of R outside the "usual" statistics domains: using advanced analytics to estimate how long a typical content-management system (CMS) remains in use. Some industry analysts cite a lifetime of 3 years, but can that estimate be backed up with data? To investigate, Michael Marth uses the customer records from a CMS provider, and looks at how long their support contracts were maintained (as a proxy for the system actually being in use). These data require a special kind of analysis, so lets take a look in detail. 

In the data, some of the contracts are still active: for example, the customer took out a support contract 4 years ago, and the contract has not yet been terminated. In statistics, this is called a right-censored data point: we know the contract will terminate eventually, but as of today, we don't know when. We do know that when it does terminate, it will have lasted at least 4 years. A naive analysis would just include this data point with a duration of 4 years, but that would bias the estimated average lifetime downwards. By the same token, we can't just ignore this data point either (not least because it would waste much of our data!).

More Read

Marketing Tips: 5 Tips for Social Media – A B2B Marketer’s Killer App
Can Cloud IP Address Be Damaged Goods?
Exploring Explortatory Search
Because it’s Friday: How the media turns correlation into causation
5 Key Takeaways for Businesses from Google I/O 2015
Fortunately, Statistics (and R) comes to the rescue with a technique called survival analysis. As the name suggests it originated in the medical field where the goal was to identify medical treatments that prolong life (lung cancer treatments, for example) without having to wait for all the patients to die before identifying a life-saving treatment. In that situation, the analysis includes data from some patients who lived some years since treatment and then died, but also includes patients that had the treatment some years ago and remain alive today. You can apply the same technique to any kind of duration data where the ultimate duration may not be known at the time of analysis. Examples include: time to failure of a machine component, time to resolution of a customer support issue, and duration of a service contract.

One of the useful things with survival analysis is that you don't simply get an estimate of the average contract time (in our original example): you can also find out what percentage of contracts last at least 3 years (or any other duration), and get error bars on that estimate to boot. R calculates this readily using the built in "survfit" function, which displays the results in a chart called a Kaplan-Meier chart:
Km-survival
The chart looks complicated, but it's easy to read with practice. Look along the horizontal axis to choose a time period: let's choose 1100 days (about 3 years). Now look upwards to find the solid line between the two dashed lines, and check its position on the vertical axis — I read it to be about 0.75. This indicates that 75% of support contracts (plus or minus about 10%) last at least three years, much better than the average duration of 3 years indicated by the analyst. In fact, according to this analysis the mean survival time is 6.75 years.

I've seen plenty of such analyses done the "naive" way in Excel, and you can see why this might lead you to the wrong conclusion. If you have data like this, it's worth taking a look at R to get better information out of censored data.

dev.day.com: The Lifetime of a CMS installation 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

What Can Academics Learn From Market Researchers?

7 Min Read

Do you know what jobs your products do for your customers?

6 Min Read

Vintage Video High Tech India – 1989

3 Min Read

How to Convince Your Executive Team to Update Your Technology

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?