Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How Genetic Algorithms and Machine Learning Apply to Investments
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > How Genetic Algorithms and Machine Learning Apply to Investments
ExclusiveMachine Learning

How Genetic Algorithms and Machine Learning Apply to Investments

Machine learning has helped hedge fund managers in surprising ways, such as by leveraging genetic algorithms.

Larry Kotch
Larry Kotch
7 Min Read
using genetic algorithms and machine learning for hedge funds
Shutterstock Photo License - By Blue Planet Studio
SHARE

Learn how genetic algorithms and machine learning can help hedge fund organizations manage a business. As well as bolster investor confidence and improve profitability.

Contents
Modern machine learning and back-testing; how quant hedge funds use it1. Manage funds and make investment decisions2. Perform quantitative analysisMethods of Algo-trading, machine learning tests, back-tests1. Algo-trading approaches2. Trend-following strategies3. Mathematical Model-based StrategiesMachine learning tests1. Pre-train tests2. Post-train tests3. Invariance testsBacktestsGenetic algorithm use caseTesting Expert Advisors on multiple currenciesFinal thoughts

As a hedge fund shareholder, you certainly want the best for your organization, right?

For instance, you want to generate effective AUM, NAV, and share value reports to improve investor confidence as a manager.

Or enable your company to produce maximum profits as a trader or employee, etc.

More Read

big data on divorce
Big Data Meets Divorce: How Companies Take Advantage Of Life Changes
The Massive Importance of UX Design for Data-Driven Online Businesses
Big Data Proliferates The Online Gaming Industry In A Surprising Way
Emailing Spectrum Customer Service as a Data-Driven Consumer
5 Amazing Benefits Of Cloud-Based Automated Billing Solutions

Well, it doesn’t need to be that difficult.

This article looks at how genetic algorithms (GA) and machine learning (ML) can help hedge fund organizations. For instance, to manage a business, boost investor confidence and increase profitability.

Let me walk you through these.

Ready?

Modern machine learning and back-testing; how quant hedge funds use it

1. Manage funds and make investment decisions

First off, hedge fund companies require sound investment decisions to enable profitability.

As such, over 56% of hedge fund managers use AI and ML when making investment decisions. And their percentage is expected to increase sharply over time.

They do so since investment algorithms are effective as they aren’t affected by opinions, emotions, and judgments like their human counterparts.

“Most of the hedge fund managers surveyed are leveraging advanced algorithms and human judgment to deliver smarter investment decisions.” This is according to Barclay Hedge founder and President Sol Waksman in his July 2018 statement.

2. Perform quantitative analysis

Similarly, hedge funds often use modern machine learning and back-testing to analyze their quant models. Machine learning has done a lot to help them improve financial trading. They do so to ensure that they’re in top form or of the highest quality.

Here, the models get tested using historical data to evaluate their profitability. And their risks before the organizations invest real money.

According to Insight FactSet, hedge funds can use ML to find patterns in data. As a result, it allows models that explain stock performance based on different factors, such as company activity and pricing.

Besides that, integrate advanced back-tests to test their algorithms from time to time to ensure that they’re in tiptop condition.

Methods of Algo-trading, machine learning tests, back-tests

1. Algo-trading approaches

Hedge funds often prefer Algo-trading strategies over human traders or analytics as they generate profits faster.

Some of the commonly used approaches include:

2. Trend-following strategies

These methods typically observe price shifts, channel flare-ups, moving averages, and associated technical indicators to decide. For instance, issue a purchase command when an asset’s price rises. And give out a sell order when the asset’s price falls.

However, they do not call for price forecasts or predictions, making them easy to implement.

3. Mathematical Model-based Strategies

Unlike trend-following approaches, these methods use time-tested and proven mathematical prototypes to enable combination-based trading.

Here, a method instructs a quant model to buy or sell stock when a specified mathematical condition is met. Or withdraw or deposit particular sums of money. An example of such is the delta-neutral trading approach.

Machine learning tests

As a routine, hedge funds usually test new and incorporated ML’s to determine their effectiveness to maintain competitive advantage.

To do so, they typically use the following evaluations:

1. Pre-train tests

They’re mainly carried out early on when developing a new ML to identify bugs to avoid needless training.

They include:

  • Tests that check an organization’s ML model output shape to ensure that it corresponds with the labels in its dataset
  • Evaluations that check for label disclosure between an ML’s training and validation datasets, etc.

What makes the pre-tests unique is that they do not require trained parameters.

2. Post-train tests

The primary aim of these tests is to cross-examine the logic gained during training and showcase how the models are performing—as behavioral reports.

3. Invariance tests

They’re typically carried out to explain the sets of perturbations used. In addition, the tests are implemented to examine the consistency of the model predictions.

Backtests

Hedge funds usually carry out back-tests on historical data to:

  1. Test if the quant models are working effectively
  2. Evaluate previous trading days or go through historical data to train new models
  3. Collect statistical data regarding the likelihood of the opening gaps getting closed within trading sessions

That said; some of the commonly used historical data analysis methods used by hedge funds include the use of:

  1. Custom software such as Python and R;
  2. Robust trading platforms, such as MetaTrader 5 for hedge funds;
  3. Efficient back-testing software.

Genetic algorithm use case

Testing Expert Advisors on multiple currencies

Hedge fund organizations mostly use a Strategy Test to test and boost their trading techniques (Expert Advisors) before engaging in business.

This reduces the chances of making losses during actual trading.

Here, an Expert Advisor with its initial variables is first run on history data during the testing phase. And subsequently, run using different parameters during the optimization phase to identify the most suitable combination.

This reduces the chances of making losses during actual trading.

Final thoughts

As you can see, genetic algorithms and machine learning are being extensively used by investment organizations, such as hedge funds to improve profitability.

You can also tap into this revolutionary field by implementing similar strategies.

For instance:

  • Understand and implement ML when making investment decisions
  • Learn and use Algo-trading approaches

And

  •  Routinely test your system’s ML capabilities

Doing so can significantly revamp your hedge fund business.

TAGGED:finance and big datafinancial techmachine learning and finance
Share This Article
Facebook Pinterest LinkedIn
Share
ByLarry Kotch
Larry Kotch is the co-founder of The Brains, an award-winning digital marketing agency in London. Ranked #3 in B2B Marketing's Global 30 under 30, Larry leads a dedicated, remote team of talented digital marketing professionals.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data and credit risk reduction
Big Data

Data Analytics Improves Credit Risk Reduction Via Diversification

7 Min Read
using data-driven cybersecurity to fight ACH fraud
Big Data

Data-Driven Strategies to Help Prevent ACH Fraud

11 Min Read
deep learning in accounting
Machine Learning

Deep Learning is Critical for Modern Small Business Accounting

9 Min Read
most valuable fintech startups
ExclusiveFintech

The 10 Most Valuable Fintech Startups Worth Over $1 Billion

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?