Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: An Introduction To Machine Learning Using Spark Language
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > An Introduction To Machine Learning Using Spark Language
ExclusiveMachine LearningNews

An Introduction To Machine Learning Using Spark Language

Nirmal Patel
Nirmal Patel
5 Min Read
machine learning with spark-language
Shutterstock Licensed Photo - By a-image
SHARE

Machine learning is an upcoming field in the world of digital science, which allows you to create algorithms to make your device learn to operate on data and also to make predictions based on collected data. Machine learning course is possible through various languages like Python, Java, C++, R, etc. Apache Spark is considered to be a convenient option as a general engine for SQL based functions, creating algorithms for Machine learning using various languages and further processing of graphs and data. Spark is also known for its integrated framework to operate both on real-time streaming and Machine learning. As such, it is a great tool for beginners to introduce themselves to Machine Learning from the basics.

One must know about the various techniques to make predictions in machine learning by Spark. Supervised learning is to direct the data towards a specific label by training a certain set of unlabelled dataset. It is used to classify data- for example spam filtering or image recognition. Unsupervised learning is used for clustering data based on certain similar features in the set of unlabelled data. This is used to predict purchase patterns of customers on sites like Amazon and also for applications on social networking sites. Semi-supervised learning uses both supervised and unsupervised techniques to perform certain predictions like voice recognitions. Another method is reinforcement technique which analyses previous datasets into maximizing a certain result. This is also called the forecasting method. As one may notice that the basic principles among all these techniques is to locate a matching set among existing data to extract future predictions.

There are certain steps involved in determining an algorithm for a dataset which can do more than just data prediction. Feature extraction is the method to filter out the data meant to be tested because the entire data is usually not required to process. This is the first step to extract input data for the algorithm which can be done manually or automatically. Manual method is time consuming so automation is preferred. Principal component analysis is used for automatic feature extraction. The next step is to split the dataset into training set or test set such that errors can be detected. Some common methods for this process are random subsampling, K-fold and leave-one-out. Training the model set is the core process for which the algorithm needs to be selected according to the task in hand. Spark has a set of algorithms in its Machine learning engine which can be used for these purposes, called the MLlib or the Machine Learning library. The algorithms include functions like classification, regression, formation of decision trees, recommendation by ALS (Alternating Least Squares), clustering and topic modelling among several others. Models are eventually evaluated to check the accuracy of the algorithms.

The best thing about Mllib is that it provides machine learning API?s in different languages like Scala, Java & Python. You can develop your machine learning application in any of these languages.

More Read

bitcoin blockchain
Guidelines on Trading Cryptocurrency Over the Blockchain
Retail Revolution: Should Businesses Invest in Wearables?
How Money Laundering Concerns Require New AI Monitoring Solutions
5 Benefits Of Machine Learning In Enterprise Electrical Systems
Un Littlest First deposit On line casino North america

The algorithms can be used individually or by grouping them to create a more accurate model. One must have an idea about the actions of these basic MLlib algorithms. Classification is a supervised technique which is used for applications like fraud detection in banks, email spam detection, etc. Regression analysis is to understand the linkages between independent and dependent variables. Decision tree learning analyses a set of data to come at a target prediction following a structure like a tree?s branches. The recommendation function uses cumulative filtering to decide user?s preferences based on their previous data. You must have come across recommendations on shopping websites, which produce lists based on your previous searches. Clustering is an unsupervised method to cluster data into similar patches. Topic modelling is also an important algorithm used to determine abstract information from a data set.

Machine learning provides a number of algorithms to work on so here you need to select the appropriate algorithm to build your application. For example, to develop a spam classifier we can use Naive Bayes or logistic regression or any other.

TAGGED:Apache Sparkmachine learning
Share This Article
Facebook Pinterest LinkedIn
Share
ByNirmal Patel
Follow:
Nirmal Patel is digital marketer & freelance enthusiast and ingenious writer & digital marketer who enjoys the challenges of creativity attention to detail at Imarticus Learning Pvt Ltd. In free time I like to write stories and Articles.

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

recovering corrupted video files with machine learning
Machine Learning

Guide to Recover a Corrupted Video File With Machine Learning

10 Min Read
deep learning and parking system
Machine Learning

How Deep Learning Technology Improves the Efficiency of Parking Management Systems

11 Min Read
machine learning importance in businesses
Machine Learning

Machine Learning Is Crucial For Expanding Online Customer Bases

7 Min Read
AI machine learning in healthcare sector
Artificial IntelligenceExclusiveFeaturedMachine LearningPredictive Analytics

How Artificial Intelligence Is Revolutionizing Healthcare Sector in 2019

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?