Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What is an Enterprise Data Warehouse?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > What is an Enterprise Data Warehouse?
Big DataData Warehousing

What is an Enterprise Data Warehouse?

Robert Cordray
Robert Cordray
6 Min Read
Data Warehouse
SHARE

Data analytics has become essential to helping businesses make strategic decisions. Software tools can help to spot patterns or discover insights into a wide range of processes. The data systems used to feed these strategies generally exist as vendor-specific enterprise data warehouse solutions. In these applications, information is loaded and structured so as to provide the most efficient results from very large collections of data.

Data Warehouses

Data warehouses are central repositories of data used to suggest new business insights. This data represents a comprehensive, cohesive view of the business. Typically, this is an historical dataset with the following characteristics:

Subject-Oriented: A data warehouse usually serves a specialized subject or business need, such as sales or manufacturing productivity.

More Read

spreadsheet business intelligence tool
Spreadsheets: Still the King of Business Intelligence Tools
Despite many experts’ doubt that whole-genome sequencing…
Video
The Surprising Effects of Big Data in Global Health [VIDEO]
Big Data Can Help You Amplify Your Sales In 2019

Time-Variant: The data is historical, so that results can be analyzed in terms of specific time frames, such as by month or by quarter over the past two years. The enterprise data warehouse is usually fed with encapsulated data from a transactional system, where only recent data is essential. For instance, a transactional system may reflect only a customer’s most recent phone number, while a data warehouse will have all the previously used numbers.

Integrated: Data warehouses combine information from a number of different sources into a homogenous view. For instance, different stores may have different names for the same product, but they will still have the same SKU or part number.

Non-volatile: Information stored in the enterprise data warehouse does not change. To maintain the integrity of the historical data, it is read-only and never altered.

What kind of data is loaded into the data warehouse?

Operational data is near real-time, such as sales information captured at POS terminals from a chain of stores. Daily sales are captured by the system and fed into data files. These files are then subject to ETL (extract, transform, and load) software or scripts to organize, or “normalize” this data into fields that can be uploaded directly into data warehouse tables.

For instance, a large retail chain will want to capture what was sold, the sales person, the store, the time, payment method, special offers or coupons, and more. Another company may be more interested in collecting customer service activity for periodic performance analysis.

Most stored data is relational. This means information exists in the form of numeric ID fields that can be linked with a single table, for instance a list of product IDs linking to textual product names and descriptions for each distinct ID. This saves space in the enterprise data warehouse while providing more meaningful information in data reporting.

How a data warehouse differs from a traditional database

Databases support day-to-day operations by capturing information as it’s produced, whether electronically or manually. These are also called transactional or operational databases. They are primarily used for capturing information from the source. A database also allows for editing of information to more closely reflect real-world changes. They are optimized for data entry: coordinating small, frequent updates and additions. Data is organized into rows, or individual records.

Data Warehouse

Although both systems can be used for reporting, a data warehouse is designed for aggregating large amounts of fixed information. The information in reports run from transactional data may be subject to change.

A data warehouse exists primarily for reporting and analysis of business operations over time in order to identify patterns. Information is typically extracted from one or multiple databases to become historical records in the data warehouse. A data warehouse will reflect all changes. Most enterprise data warehouse solutions require information to be stored in terms of columns, or dimensions, such as time or location, to retrieve a range of measures, such as dollars or quantities. This allows for drill-down through various levels of detail within the same reporting tool.

Data marts

Smaller companies, or even larger companies when approaching a particular data project, may segment data into smaller, more limited data sets known as “data marts”. This allows them to eliminate the operational overhead of excessive or irrelevant information. Data marts may be extracted from data warehouses as needed or exist separately.

New or smaller companies may not have the need to maintain a data warehouse. But in mid-range to large companies, there is usually daily use of both transactional databases and data warehouses. The important difference is that enterprise data warehouse solutions are read-only and optimized for analysis of a constantly growing amount of operational data to support business decisions.

 

TAGGED:data warehouseenterprise data warehouse
Share This Article
Facebook Pinterest LinkedIn
Share
ByRobert Cordray
Follow:
Robert Cordray is a former business consultant and entrepreneur with over 20 years of experience and a wide variety of knowledge in multiple areas of the industry. He currently resides in the Southern California area and spends his time helping consumers and business owners alike try to be successful. When he’s not reading or writing, he’s most likely with his beautiful wife and three children.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Teradata Active Enterprise Update

4 Min Read

New Generation of Big-Data Analytics with 1010data

6 Min Read

Analytics: Not About Saving Time

7 Min Read

No, Hadoop Is Not Going To Replace Your Data Warehouse

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?