Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Will You Always Save Money with Hadoop?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Will You Always Save Money with Hadoop?
Big DataData WarehousingHadoopOpen Source

Will You Always Save Money with Hadoop?

TamaraDull
TamaraDull
7 Min Read
Image
SHARE

Image

Contents
Two Big Data ExamplesExample 1: Build a Data WarehouseExample 2: Build a Data RefineryCost Comparison: A 5-Year SummaryExample 1: WINNER—Data warehouseExample 2: WINNER—HadoopAbout the Total Cost of Data (TCOD) FrameworkDownload the Free TCOD Report and Spreadsheet

If you answered “yes” to the question posed in the title, you’re right. Because if you’re talking about the open source Apache Hadoop project (and any related open source project) , you can download the software for free, take advantage of the free licensing, and run it on low-cost commodity hardware.

Image

If you answered “yes” to the question posed in the title, you’re right. Because if you’re talking about the open source Apache Hadoop project (and any related open source project) , you can download the software for free, take advantage of the free licensing, and run it on low-cost commodity hardware.

More Read

It’s pretty much what you’re thinking about right…
4 Brilliant Ways To Use Big Data To Boost Gmail Security
The Growing Utilization Of Big Data For Website Testing
How Big Data Is Changing Insurance Forever
Micro vs. Macro Information Retrieval

But if you answered “no,” you’re also right. Whereby Hadoop-related technologies can save you (lots of) money when it comes to system/infrastructure costs, those cost savings can quickly disappear when you start looking at application/development costs. It all depends on what analytic data problem you’re trying to solve.

In this post, we’ll take a look at two big data examples and determine, for each example, which platform – the enterprise data warehouse (EDW) or Hadoop – will be the most cost-effective over time. I will then introduce you to the Total Cost of Data (TCOD) framework, and show you where you can download it for free.

Two Big Data Examples

These two examples come from WinterCorp’s Big Data – What Does It Really Cost? special report, which introduces the Total Cost of Data (TCOD) framework. The first example is building an enterprise data warehouse, and the second example is building a data refinery. We’ll first look at the requirements for each example, and then compare the costs. Again, the question we want to answer is: Which platform – the EDW or Hadoop – is the most cost-effective over time?

Example 1: Build a Data Warehouse

  • Objective: Build an enterprise data warehouse for a large financial institution
  • Data volume: 500 TB
  • Business requirements:
    • Large number of data sources, users, complex queries, analyses and analytic applications
    • Data integration and integrity
    • Reusability and agility to accommodate rapidly changing business requirements and long data life

Example 2: Build a Data Refinery

  • Objective: Refine the sensor output of large industrial diesel engines
  • Data volume: 500 TB
  • Business requirements:
    • Rapid, intensive processing of a small number of closely-related data sets
    • Analysis reads the entire dataset
    • Life of the raw data is relatively short
    • Small group of experts collaborate on analysis

Cost Comparison: A 5-Year Summary

These results may surprise you. Keep in mind that the results are just estimates (because a lot of assumptions have to be made), but these estimates trump anecdotal guesses any day.

Image

Example 1: WINNER—Data warehouse

The data warehouse platform ($265 million) is far more cost-effective than a Hadoop solution ($740 million). Choosing the data warehouse platform in this case lowers the overall cost by a factor of 2.8. Further analysis shows that you will get essentially the same result for a data warehouse ranging in size from 50 TB to 2 PB.

The development of complex queries and analytics are the dominant cost factors in the example. Of the $44 million estimated for EDW system cost, $10.8 million is the initial acquisition cost – about 4% of the TCOD.

While it is common to focus on the first major outlay in the project—i.e., the acquisition of a platform—the total cost of the project is far more important, and other factors greatly outweigh all the system costs combined.

Example 2: WINNER—Hadoop

Hadoop ($9.5 million) is a far more cost-effective solution than a data warehouse appliance ($30 million). The system cost for the data warehouse appliance is the dominant factor in this case. Note the inclusive concept of the system cost and its breakdown in the table above, where just $5.5 million of the $22.7 million system cost for the data warehouse appliance is incurred in the first year.

About the Total Cost of Data (TCOD) Framework

The purpose of the TCOD framework is to help organizations estimate the total cost of a big data solution for an analytic data problem. It considers two major platforms for implementing big data analytics – the enterprise data warehouse and Hadoop – and helps you understand where each big data platform architecture works best.

In addition to the expected system costs for each platform, the TCOD framework also considers the cost of using the data over a period of time, typically five years. These usage costs include system and data administration, data integration, and the development of queries, procedural programs and analytic applications.

The TCOD framework was developed by Richard Winter and his team at WinterCorp, a consultancy focused on large scale data management challenges. WinterCorp introduced the TCOD framework in a 2013 special report called Big Data – What Does It Really Cost?.

Download the Free TCOD Report and Spreadsheet

In addition to the special report, WinterCorp also released a TCOD spreadsheet—the same one used to calculate the costs in the examples above. It’s an extensive Excel workbook that is well-documented and ready to use.

So if you’re ready to roll up your sleeves and do the hard work of figuring out what big data really costs, then the TCOD framework is waiting for you.

  • TCOD Special Report: http://www.wintercorp.com/tcod-report
  • TCOD Spreadsheet: http://www.wintercorp.com/tcod-spreadsheet
TAGGED:The Big Data MOPS Series
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

financial data
Engineering Trust into Enterprise Data with Smart MDM Automation
Big Data Exclusive
christina wocintechchat com 6dv3pe jnsg unsplash
How CIS Credentials Can Launch Your AI Development Career
Exclusive News
big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Best PracticesBig DataData WarehousingHadoopMarket ResearchPrivacy

My 7 Big Data Favorites of 2014

3 Min Read
Image
Big DataPrivacy

Big Data Privacy Is About You, Me, Them, and Us

8 Min Read
Image
Big DataData ManagementPrivacy

You May Not Be as Anonymous as You Think

7 Min Read
big data MOPS series
Best PracticesBig DataPolicy and GovernancePrivacy

Are You Sweeping Big Data Privacy Under the Carpet? 5 Things to Do Instead

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?