Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Miss the Right Connections at Your Own Peril
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Miss the Right Connections at Your Own Peril
AnalyticsPredictive AnalyticsSocial DataSocial Media Analytics

Miss the Right Connections at Your Own Peril

BillFranks
BillFranks
5 Min Read
SHARE

connection analytics

connection analytics

Historically, most analytics have had laser focus on specific entities like a customer, a product, a vendor, or a variety of others. When performing analysis, the focus is usually purely based upon facts about each entity. For example, each customer’s individual spend, frequency, and demographics. While such analytics have proven quite valuable, they usually don’t account for the relationships between entities and the nature of those relationships.

This is where connection analytics (often called graph analysis) comes into play. Connection analytics is best known for its use in social network analysis, which is commonly used to explore the relationships between people within social media environments. However, connection analytics can be used for a much broader range of purposes that aren’t often given the credit deserved. After all, there are myriad situations where understanding relationships can provide meaningful insights. A few include:

More Read

Nielsen’s Social Media Report: A Snapshot Overview of the Social Media Landscape
High-Performing Predictive Analytics with R and Hadoop
ADAPA means business – Predictive Analytics in 90 seconds
Data Storytelling: More Immersive and Easier on the Brain
Pssst … How Much Money For Your Personal Data?
  • The famous approach of taking into account the fact that members of a calling circle have a greatly increased risk of churn as other members of the circle defect to a different telecom service provider.
  • A variation on that example is for human resources to study the relationships between employees as evidenced by email communications to enable appropriate retention actions when an associate resigns.
  • Compliance officers and law enforcement can explore the patterns of communications and transactions to uncover fraudulent or otherwise suspicious activity between people or organizations.
  • Network engineers can explore the communications between various sensors to determine when network traffic is taking unexpected routes that may be caused by trouble with certain pieces of equipment.
  • Marketers can dive more deeply into the indirect linkages between products or product groups to come up with better cross- and up-sell opportunities.

As the examples illustrate, there is broad applicability of connection analytics. However, most organizations have not yet added it to their analytics arsenal.

This is a mistake.

Part of what makes the analysis of connections so powerful is that while virtually every metric typically used for analysis focuses only on facts about each individual entity, the analysis of connections makes it possible to also understand each entity’s relationships to others. The analysis of connections provides distinctive information that has very little overlap with other information typically available.

Of course, analyzing connections on a large scale is a computationally intensive process. To be effective, it is necessary to implement a graph analysis engine. One recent and strong entrant into this area is the Teradata Aster SQL-GR graph engine. This engine allows not just scalable graph analytics to be generated, but also makes it easy to combine graph analytics with a broad range of other analytics. This is important because analyzing connections is rarely all that is needed. Usually multiple types of analysis combined will yield the best results.

The concept of combining multiple types of analysis is very important. In the telecom churn example, service providers don’t react based only upon who is connected to a defecting customer. They also take into account the other factors they know about each customer to determine the risk of churn. For example, customers with longer tenure, multiple services, and multiple sub-accounts will be less likely to churn than newer     customers with only a single, basic service. This will still hold as a customer’s connections defect. The power is in the cumulative effect of all of the information being combined together.

While connection analytics won’t solve all of your organization’s problems, it can probably help solve some of them better. Given that it isn’t widely adopted yet, there is a chance to get a competitive advantage by putting it to use first. Ignore connection analytics at your own peril!

Share This Article
Facebook Pinterest LinkedIn
Share
ByBillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Black Box Analytics

10 Min Read
big data crisis management
AnalyticsBig DataData ManagementITNewsPredictive Analytics

Big Data: A Natural Solution for Disaster Relief

5 Min Read

First Look – Netuitive

3 Min Read

Could book lovers finally be willing to switch from pages to…

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?