Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Why Data Quality Is of Utmost Importance in Information-Centric Organisations
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Why Data Quality Is of Utmost Importance in Information-Centric Organisations
Big DataData Quality

Why Data Quality Is of Utmost Importance in Information-Centric Organisations

Datafloq
Datafloq
6 Min Read
Image
SHARE
ImageHigh quality data will lead to valuable information and insights for your organisation, but obtaining high quality data is easier said than done. Improving your data quality and sustaining a good quality data output should be at the centre of your Big Data Strategy.
ImageHigh quality data will lead to valuable information and insights for your organisation, but obtaining high quality data is easier said than done. Improving your data quality and sustaining a good quality data output should be at the centre of your Big Data Strategy. Last week I was invited to speak at the Asia Pacific Data Quality Conference in Melbourne, Australia and I’d like to share some of insights of this event, as proper data governance could set your organisation apart from your competitor.

Data quality starts with the right Master Data Management processes within your organisation, as the Master Data forms the basis of your Big Data analytics. Master Data of the right quality is data that is complete, accurate & consistent, available, time-stamped and industry standards-based. Improving the data will results in reduced costs, improved efficiency, better insights and enables collaboration across verticals.

Complete data means that all relevant data for a customer is linked and entered in the database. Often obtaining complete data records is a challenge for organisations, as the sales people often forget to ask certain information or customers do not see the benefit of providing all required details. The Australian insurer IAG has found a solution for this problem, as they will be launching a so-called “data-discount” for their customers. This means that IAG will provide their customers with all sorts of discounts (free movie tickets, discounts on their fees, etc.) in return for complete data records.

Accurate and consistent data is all about ensuring that the data entered, is entered correctly, without misspellings, typos and/or random abbreviations. A good example is that the American logistics company US Xpress, when implementing their Big Data Strategy, found 178 different ways of writing “Walmart” in their database. Of course, if you want to link all data, this should be prevented. IAG also found a solution for this problem, as Ram Kumar, the CIO of IAG explained, they have moved towards quality awards (monthly, quarterly and annually) for their branches to ensure that all data is accurate and consistent. The branch that achieves the highest data quality receives the award. This has resulted in their quality levels shooting up from 65% to 95% within just a few months.

The data of course should be available and easily accessible at all times for users and they should not need to search for it manually. In addition, the data should be time-stamped, which refers to that it is clear when the data was created, changed and/or deleted and by whom as well that it should be sufficiently up-to-date for the task at hand. Finally, it should adhere to industry standards so that it can be exchanged among companies and verticals. Especially for data related to the Internet of Things and the Industrial Internet this will be a challenge to get this arranged in the near future.

The Australian Telecom organisation Telstra has created a Data Firewall to ensure the quality of their data. The data quality firewall improves the way their information factory delivers data that is available when required and that the data is complete and error-free. The data quality firewall provides 24×7 automated monitoring of data in Telstra’s Enterprise Data Warehouse and alerts when data quality issues are detected.

The above may seem obvious and easy to ensure, as there are sufficient technologies and techniques available in the market that could help. However, the problem is not so much the technology, but much more a human problem and that makes it a lot more difficult to solve. After all, creating a ‘single source of truth’ to ensure the quality of the data is often not achieved because employees fail to meet the set standards. Often small errors or breaches are not a problem, but when they align, the so-called Swiss Cheese Model of Accident Causation, they can eventually lead to a major data breach. So all sources are important and all employees involved with data at any point in time should understand the importance of high quality data.

The best way to selling the issue of data quality to your employees, and management, is therefore to determine the costs involved with wrong data, data breaches, and the amount of lost revenue it could result in. According to IBM, data-quality related problems can results in millions of dollars in lost revenue, unhappy and lost customers, failure to meet regulatory compliance (and eventually corresponding fines) as well as failure of information-intensive projects.

In the end, if data is not managed correctly and the quality is not ensured, your data can become a risky liability instead of a valuable asset. So, within a data-driven, information-centric organisation everyone should be aware of the importance of high quality data to ensure customer engagement and eventually a positive bottom line of the company.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Data Paradox

4 Min Read
Smart Data
Best PracticesBig DataData ManagementData QualityDecision ManagementPredictive AnalyticsRisk ManagementSocial Data

Can Smart Data Ensure Cybersecurity and Data Protection?

6 Min Read

Amazon’s Data-Driven New Media Strategy: Bring Broadcast Ad Spend Online

6 Min Read

Statistical Rules of Thumb, Part III: Always Visualize the Data

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?