Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 5 Principles of Analytical Hub Architecture (Part 1)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > 5 Principles of Analytical Hub Architecture (Part 1)
AnalyticsBest PracticesBig DataData QualityITModelingPredictive Analytics

5 Principles of Analytical Hub Architecture (Part 1)

RickSherman
RickSherman
3 Min Read
analytical hub architecture
SHARE

analytical hub architectureAs I discused the other day in Why you need an analytical hub, enterprises need to spend time looking forward, rather than just backwards, at historical data.

analytical hub architectureAs I discused the other day in Why you need an analytical hub, enterprises need to spend time looking forward, rather than just backwards, at historical data. The analytical hub is an important part of making that happen. The analytical hub must be designed properly if it’s going to allow data scientists to perform advanced analytics and predictive modeling.

In my white paper, Analytics Best Practices: The Analytical Hub, I present five design principles. The first two are below. I’ll blog about 3-5 in a subsequent post:

1. Data from everywhere needs to be accessible and integrated in a timely fashion

More Read

Using decision management to manage risk
Estimating Extract, Transform, and Load (ETL) Projects
What are Advanced Segments in Google Analytics and Why You Should Use Them
The New Quantitative Era: Creating Successful Business Change with Analytics
AI Technology is Invaluable for Cybersecurity

Expanding beyond traditional internal BI sources is necessary as data scientists examine such areas as the behavior of a company’s customers and prospects; exchange data with partners, suppliers and governments; gather machine data; acquire attitudinal survey data; and examine econometric data. Unlike internal systems that IT can use to manage data quality, many of these new data sources are incomplete and inconsistent forcing data scientists to leverage the analytical hub to clean the data or synthesize it for analysis. 

Advanced analytics has been inhibited by the difficulty in accessing data and by the length of time it takes for traditional IT approaches to physically integrate it. The analytical hub needs to enable data scientists to get the data they need in a timely fashion, either physical integrating it or accessing virtually-integrated data. Data virtualization speeds time-to-analysis and avoids the productivity and error-prone trap of physically integrating data.

2. Building solutions must be fast, iterative and repeatable

Today’s competitive business environment and fluctuating economy are putting the pressure on businesses to make fast, smart decisions. Predictive modeling and advanced analytics enable those decisions to be informed.  Data scientists need to get data and create tentative models fast, change variables and data to refine the models, and do it all over again as behavior, attitudes, products, competition and the economy change. The analytical hub needs to be architected to ensure that solutions can be built to be fast, iterative and repeatable.

TAGGED:analytical hubbusiness intelligencesystem architecture
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

business intelligence future in the coming years
Business Intelligence

What is the Future of Business Intelligence in the Coming Year?

10 Min Read
business intelligence tools
Best PracticesBusiness IntelligenceExclusive

10 Best Practices For Business Intelligence Dashboards

15 Min Read

Big Data: What can an energy company teach us about data science?

7 Min Read
hadoop big data
Big Data

Demystifying Hadoop: Not All Problems Are Hadoop-able

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?