Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 5 Principles of Analytical Hub Architecture (Part 1)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > 5 Principles of Analytical Hub Architecture (Part 1)
AnalyticsBest PracticesBig DataData QualityITModelingPredictive Analytics

5 Principles of Analytical Hub Architecture (Part 1)

RickSherman
RickSherman
3 Min Read
analytical hub architecture
SHARE

analytical hub architectureAs I discused the other day in Why you need an analytical hub, enterprises need to spend time looking forward, rather than just backwards, at historical data.

analytical hub architectureAs I discused the other day in Why you need an analytical hub, enterprises need to spend time looking forward, rather than just backwards, at historical data. The analytical hub is an important part of making that happen. The analytical hub must be designed properly if it’s going to allow data scientists to perform advanced analytics and predictive modeling.

In my white paper, Analytics Best Practices: The Analytical Hub, I present five design principles. The first two are below. I’ll blog about 3-5 in a subsequent post:

1. Data from everywhere needs to be accessible and integrated in a timely fashion

More Read

Case Study : Competitive Intelligence for Telecommunications
Digital Strategy and Customer Relationships: Big Value in Tight Connections
Is Performance Management Art, Craft or Science?
Business Intelligence: Is Your Firm Missing Out?
Inside a Consumer’s Mind with Text Analytics

Expanding beyond traditional internal BI sources is necessary as data scientists examine such areas as the behavior of a company’s customers and prospects; exchange data with partners, suppliers and governments; gather machine data; acquire attitudinal survey data; and examine econometric data. Unlike internal systems that IT can use to manage data quality, many of these new data sources are incomplete and inconsistent forcing data scientists to leverage the analytical hub to clean the data or synthesize it for analysis. 

Advanced analytics has been inhibited by the difficulty in accessing data and by the length of time it takes for traditional IT approaches to physically integrate it. The analytical hub needs to enable data scientists to get the data they need in a timely fashion, either physical integrating it or accessing virtually-integrated data. Data virtualization speeds time-to-analysis and avoids the productivity and error-prone trap of physically integrating data.

2. Building solutions must be fast, iterative and repeatable

Today’s competitive business environment and fluctuating economy are putting the pressure on businesses to make fast, smart decisions. Predictive modeling and advanced analytics enable those decisions to be informed.  Data scientists need to get data and create tentative models fast, change variables and data to refine the models, and do it all over again as behavior, attitudes, products, competition and the economy change. The analytical hub needs to be architected to ensure that solutions can be built to be fast, iterative and repeatable.

TAGGED:analytical hubbusiness intelligencesystem architecture
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Delivering Data Warehousing and BI Projects using Agile

8 Min Read
business intelligence for exhibitions
Data Collection

Crucial Benefits of Collecting and Analyzing Data for Modern Businesses

16 Min Read
data analytics is essential for boosting business growth
Analytics

4 Ways to Use Analytics to Measure and Optimize Business Growth

7 Min Read

Top 14 Benefits of Business Intelligence – Part II

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?