Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 5 Principles of Analytical Hub Architecture (Part 1)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > 5 Principles of Analytical Hub Architecture (Part 1)
AnalyticsBest PracticesBig DataData QualityITModelingPredictive Analytics

5 Principles of Analytical Hub Architecture (Part 1)

RickSherman
RickSherman
3 Min Read
analytical hub architecture
SHARE

analytical hub architectureAs I discused the other day in Why you need an analytical hub, enterprises need to spend time looking forward, rather than just backwards, at historical data.

analytical hub architectureAs I discused the other day in Why you need an analytical hub, enterprises need to spend time looking forward, rather than just backwards, at historical data. The analytical hub is an important part of making that happen. The analytical hub must be designed properly if it’s going to allow data scientists to perform advanced analytics and predictive modeling.

In my white paper, Analytics Best Practices: The Analytical Hub, I present five design principles. The first two are below. I’ll blog about 3-5 in a subsequent post:

1. Data from everywhere needs to be accessible and integrated in a timely fashion

More Read

data encryption and security
Why You Must Leverage Encryption for Data Protection in the Digital Transformation Era
‘Garbage in, garbage out’ — with a 2012 Twist
Why Data-Driven Phone Verification Solutions Are Critical For Businesses
How Big Data Offers Better Electronic Signature Solutions
Big Data = Big Money: The ROI of Business Intelligence

Expanding beyond traditional internal BI sources is necessary as data scientists examine such areas as the behavior of a company’s customers and prospects; exchange data with partners, suppliers and governments; gather machine data; acquire attitudinal survey data; and examine econometric data. Unlike internal systems that IT can use to manage data quality, many of these new data sources are incomplete and inconsistent forcing data scientists to leverage the analytical hub to clean the data or synthesize it for analysis. 

Advanced analytics has been inhibited by the difficulty in accessing data and by the length of time it takes for traditional IT approaches to physically integrate it. The analytical hub needs to enable data scientists to get the data they need in a timely fashion, either physical integrating it or accessing virtually-integrated data. Data virtualization speeds time-to-analysis and avoids the productivity and error-prone trap of physically integrating data.

2. Building solutions must be fast, iterative and repeatable

Today’s competitive business environment and fluctuating economy are putting the pressure on businesses to make fast, smart decisions. Predictive modeling and advanced analytics enable those decisions to be informed.  Data scientists need to get data and create tentative models fast, change variables and data to refine the models, and do it all over again as behavior, attitudes, products, competition and the economy change. The analytical hub needs to be architected to ensure that solutions can be built to be fast, iterative and repeatable.

TAGGED:analytical hubbusiness intelligencesystem architecture
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Staring at the Lights: Your Data Warehouse Isn’t a Commodity

6 Min Read

Design Patterns

9 Min Read

Tableau Public launches visual analysis for the masses

6 Min Read

Alteryx 8.5 and the Data Artisan: Focusing on the User Experience of the “New Boss”

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?