Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: R and the Next Big Thing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > R and the Next Big Thing
Predictive Analytics

R and the Next Big Thing

DavidMSmith
DavidMSmith
7 Min Read
SHARE

I’ve been traveling for the past few days (for the R/Finance 2010 conference in Chicago), so I’d missed much of the reaction to AnnMaria De Mars’ article last week where she claimed that “R is an epic fail”. Understandably, that inflammatory statement provoked many reactions from the R community on Twitter and in the blogosphere. (I suspect the fact that she was attending a SAS conference when writing the post only added fuel to the fire.) Yihui Xie was the first to bring attention to the article, and Drew Conway followed up with a detailed and well-reasoned response, and Tal Galili provides a great round-up of other responses along with his own commentary.

Now that I’m back at my desk and have had a chance to reflect on the post and its responses, it seems like the disconnect is less around what R does, but rather who uses it. According to De Mars, “The vast majority of people are NOT programmers. They are used to looking at things and clicking on things.” And for the most part, I think that’s true: most of the people who use R are statisticians, and there are more non-statisticians than statisticians in the world. And R does have a steep learning…

More Read

The Future of Soccer is in its Analytics
With the help of IBM’s new supply chain consulting service,…
The Business And Technological Benefits Of Data Lakes
Anderson Analytics Honored at Advertising Research Foundation
AT&T’s service, called FamilyMaps, allows people to…

I’ve been traveling for the past few days (for the R/Finance 2010 conference in Chicago), so I’d missed much of the reaction to AnnMaria De Mars’ article last week where she claimed that “R is an epic fail”. Understandably, that inflammatory statement provoked many reactions from the R community on Twitter and in the blogosphere. (I suspect the fact that she was attending a SAS conference when writing the post only added fuel to the fire.) Yihui Xie was the first to bring attention to the article, and Drew Conway followed up with a detailed and well-reasoned response, and Tal Galili provides a great round-up of other responses along with his own commentary.

Now that I’m back at my desk and have had a chance to reflect on the post and its responses, it seems like the disconnect is less around what R does, but rather who uses it. According to De Mars, “The vast majority of people are NOT programmers. They are used to looking at things and clicking on things.” And for the most part, I think that’s true: most of the people who use R are statisticians, and there are more non-statisticians than statisticians in the world. And R does have a steep learning curve today.

But I think the point that’s being missed here is that different communities have a different concept of what statistical analysis is. It’s almost a generational difference: if your statistical education was based around SAS or SPSS, it seems that your view of statistics is a very procedural one: for this kind of problem, fit that kind of model, and look at these results. That’s a worldview that’s easily accommodated by the procedural nature of SAS programming, or the regimented nature of point-and-click GUIs such as one finds in SPSS.

But there’s a newer — and, for the most part, younger — cohort of statisticians out there now, who have a different view of statistics. For them, statistics is less of a set of rigid procedures and more of a fluid process. A process where trying out different data transformations and models is encouraged. Where innovative visualizations of data are created. Where cross-discipline fertilization is commonplace, and models from (say) biostatistics are successfully applied to marketing data. I meet the members of this cohort mainly within industries where innovation is particularly valued: places like Web 2.0 and social-media companies; hedge funds; drug discovery; and marketing optimization at a greater rate than I do in “traditional” venues for statisticians. And most of them have been trained in R.

Can these two communities ever be bridged? I think it’s inevitable. The need for data analysts is only going to grow further, but given that the way we think about data analysis and statistics has changed, so the tools we use in the future are going to need to accommodate that change. R’s flexibility (the programming language) and innovation (the exponential growth in add-on packages) driven by the open-source community is what makes it attractive to those organizations where innovation is paramount. (And given competitive forces, innovation in data analysis will soon be paramount for most.)  But it’s true: there will always be more non-programmers than programmers, and even they are going to need a software platform that supports a freer, less procedural style of data analysis. “Statistics 2.0”, if you will.

So why can’t R be that platform? What if we could bring the innovation and flexibility of R, and make it available to non-programmers? I think it’s possible: in fact, making R accessible to more users (and therefore customers, natch) has been a focus area for REvolution since its inception. As it happens, I’m looking forward to sharing some exciting developments in an extensible and flexible user-interface for large-scale data analysis that we’ve been prototyping for R. R is a lot more than a programming language, and it will certainly become much more in the future. In fact, I’d second Joe Dunn in saying:

“I will not be surprised if in ten years R is the standard for statistical data analysis, much as Linux has supplanted commercial UNIX and gone on to explore territory that its predecessor never touched (look at Ubuntu). R may not be the next big thing, but R is certainly a big thing that is forthcoming.”

AnnMaria’s blog: The Next Big Thing

Link to original post

TAGGED:data managementrstatistical analysis
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

A free book on Geostatistical Mapping with R

5 Min Read

Visualizing Katrina’s Strongest Winds with R

1 Min Read
Big Data Research
Best PracticesBig Data

Why You Need A Methodology For Your Big Data Research

6 Min Read
business analytics
Business IntelligencePredictive Analytics

The Iceland Volcano Ash – A Great Way to Validate Business Analytics

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?