Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Trying out glmnet: a case study in open-source development
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Trying out glmnet: a case study in open-source development
Data MiningPredictive Analytics

Trying out glmnet: a case study in open-source development

DavidMSmith
DavidMSmith
4 Min Read
SHARE
Over at Stat Man’s Corner I found a story that really encapsulates one of R’s greatest benefits: the ability to try out new statistical methods and run them through their paces.  Back in January, Trevor Hastie (a well-renowned author and Professor of Statistics at Stanford) announced a new version of glmnet, a machine-learning method for “fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models”.  The details of the model are a bit beyond my ken (see the story for the details of how it was applied to the 1998 Current Population Survey data) — what I find most interesting was the process of getting new types of models in use through R.  The author says it best:

So the R user community had just been provided access to a latest learning algorithm hot off the development presses from three world-renowned practitioners – for free. And glmnet is readily accessible from the internet, installing on existing R platforms painlessly. No commercial stats package that I know of – certainly not the market leader – is even close to releasing a competitive offering. I’d say that’s a pretty good deal for stats types like me, and …

Over at Stat Man’s Corner I found a story that really encapsulates one of R’s greatest benefits: the ability to try out new statistical methods and run them through their paces.  Back in January, Trevor Hastie (a well-renowned author and Professor of Statistics at Stanford) announced a new version of glmnet, a machine-learning method for “fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models”.  The details of the model are a bit beyond my ken (see the story for the details of how it was applied to the 1998 Current Population Survey data) — what I find most interesting was the process of getting new types of models in use through R.  The author says it best:

So the R user community had just been provided access to a latest learning algorithm hot off the development presses from three world-renowned practitioners – for free. And glmnet is readily accessible from the internet, installing on existing R platforms painlessly. No commercial stats package that I know of – certainly not the market leader – is even close to releasing a competitive offering. I’d say that’s a pretty good deal for stats types like me, and a benefit to working with a fertile, world-wide open source initiative like R.

One other point to add: this is also a good example of how early release of new models like this can contribute to their development.  The glmnet package gas been around since at least June 2008 (at least, that’s the date of the oldest version I can find in the CRAN archives). Older versions had some minor problems, but thanks to users trying it out and reporting problems directly back to the author an improved version is available in about 6 months. In his announcement of version 1.1-3, Hastie says:

Thanks to many users, esp. Tim Hesterberg, for notifying us of the errors.

That’s not mere courtesy. That’s a vindication of the open-source process.
Stat Man’s Corner: The R Learning Lasso

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Information led transformation with decision management

3 Min Read

Data Miners: Participate in 3rd Annual Survey

1 Min Read

Swimming with the Smarter Customer: The Speedo International Story

8 Min Read

Privacy, Pseudonymity, and Copyright

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?