Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What is a good classification accuracy in data mining?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > What is a good classification accuracy in data mining?
Business IntelligenceData Mining

What is a good classification accuracy in data mining?

SandroSaitta
SandroSaitta
6 Min Read
SHARE

What a good question! Or what a bad question should I say. In fact, this question is not a good one since if we ask it this way, we might expect an answer that is valid for any data mining problem. This is of course not possible. This question may be asked by a data miner, since it’s one way of measuring the quality of the data mining algorithm.  Indeed, you can estimate how good your decision tree or neural networks are by estimating the classification rate of the test set. My point in this article is to highlight the fact that the classification percentage depends on the application in which data mining is used.

Let me explain that with a few examples from my own experience. I have a friend working in the domain of face recognition. According to him, an algorithm (machine learning in his case) is well fitted to the problem when you get a classification accuracy above 97% for example. This may be true, but only in his domain, which is face recognition. In this domain, you apply machine learning to pictures to recognize faces. In this case, you have no outside effect or variables that could influence the output (the class you predict) which is not present in the pixels…

More Read

“Average” Statistics that Bruise Our Ears
Companies encountering a data engineering talent vacuum
How AI Chatbots Are Revolutionizing IT Operations and Customer Service
Email & Mobile
Recap of Global Business Intelligence and Analytics News [VIDEO]

What a good question! Or what a bad question should I say. In fact, this question is not a good one since if we ask it this way, we might expect an answer that is valid for any data mining problem. This is of course not possible. This question may be asked by a data miner, since it’s one way of measuring the quality of the data mining algorithm.  Indeed, you can estimate how good your decision tree or neural networks are by estimating the classification rate of the test set. My point in this article is to highlight the fact that the classification percentage depends on the application in which data mining is used.

Let me explain that with a few examples from my own experience. I have a friend working in the domain of face recognition. According to him, an algorithm (machine learning in his case) is well fitted to the problem when you get a classification accuracy above 97% for example. This may be true, but only in his domain, which is face recognition. In this domain, you apply machine learning to pictures to recognize faces. In this case, you have no outside effect or variables that could influence the output (the class you predict) which is not present in the pixels of the picture. Thus, a very high classification accuracy can be reached. Don’t get me wrong, I’m not saying that face recognition is an easy task, rather that with the correct algorithm and the right data preparation, a very high classification rate can be reached.

Let’s take another application: predicting user clicks on some given ads. That’s the current application I’m working on with the FinWEB project. In this case, most of my models reach a classification accuracy of around 70%. Is that bad? Well, according to the application domain, not really. When we predict if the user will click or not on the ad, we don’t have all possible information at our disposal. We only have some data that represent his behavior in a given time frame. We don’t have all the user brain in a data base. There are so many influencing factors, that it is quite satisfying to reach a classification percentage of 70%.

Finally, I will take the example of data mining in finance. When applying data mining to the problem of stock picking, I obtained a classification accuracy range of 55-60%. While it looks to be a poor result, it’s not. We should consider all the influencing factors that can affect the price of a stock. While we may use hundreds of input parameters, they may only represent a very small percentage of all information that could influence the price of a stock. This is very far from the face recognition case with every pixel defined.

My point in this post was to show that there is no definitive answer to this question, which is in fact not a good one. The classification accuracy mainly depends on the application domain. Feel free to share your own experiences by commenting this post!

Link to original post

TAGGED:data mininguser behavior
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News
edge networks in manufacturing
Edge Infrastructure Strategies for Data-Driven Manufacturers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Artificial Intelligence tools for crime busting
Artificial IntelligenceBest PracticesBig DataData ManagementData MiningPolicy and GovernanceRisk Management

Artificial Intelligence: The New Super-Efficient Crime Busting Tool

6 Min Read
App Development
AnalyticsArtificial IntelligenceBig DataMachine Learning

Why Big Data and Machine Learning Will Be Essential To Drive App Development Growth

6 Min Read

It’s time to industrialize analytics

8 Min Read
Security

Database Activity Monitoring – A Security Investment That Pays Off

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?