Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Smarter Cruise Control With Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Smarter Cruise Control With Analytics
Uncategorized

Smarter Cruise Control With Analytics

RamaRamakrishnan
RamaRamakrishnan
7 Min Read
SHARE

As readers of this blog know, I am always on the lookout for examples of Monday Morning Analytics in action. I stumbled on an unusual and neat example recently.

I was in Chicago last week to give a talk on analytics at Navteq, possibly the world’s largest provider of mapping data and related services. I heard that Navteq map data is used 100m times a day; for example, if you use a Garmin GPS device or a mapping application on a Nokia phone, you are using Navteq data.

I had several interesting conversations about how location data can be profitably used in a variety of contexts, especially in retailing. I heard some great examples of creative and clever location-based services that are likely to appear in the next couple of years, particularly on mobile phones (the marriage of location data with mobile phones has already produced interesting progeny like Foursquare and Gowalla). But what caught my attention was an example that had nothing to do with mobile phones. It involves the cruise-control system in trucks!

All trucks have cruise control. When a truck driver is on an interstate highway and turns on cruise control…

More Read

Is It Time to Fire Your Data Analyst?
Data Governance, The War on Drugs, and Little Blue Pills
A Very Good Year
Article on Customer Decisioning
The Emailed Dashboards School of Management

As readers of this blog know, I am always on the lookout for examples of Monday Morning Analytics in action. I stumbled on an unusual and neat example recently.

I was in Chicago last week to give a talk on analytics at Navteq, possibly the world’s largest provider of mapping data and related services. I heard that Navteq map data is used 100m times a day; for example, if you use a Garmin GPS device or a mapping application on a Nokia phone, you are using Navteq data.

I had several interesting conversations about how location data can be profitably used in a variety of contexts, especially in retailing. I heard some great examples of creative and clever location-based services that are likely to appear in the next couple of years, particularly on mobile phones (the marriage of location data with mobile phones has already produced interesting progeny like Foursquare and Gowalla). But what caught my attention was an example that had nothing to do with mobile phones. It involves the cruise-control system in trucks!

All trucks have cruise control. When a truck driver is on an interstate highway and turns on cruise control, the system maintains the desired speed, accelerating and braking as needed.

But this sort of simple cruise control mechanism is not particularly fuel-efficient. It will consume a lot of gas to accelerate up a small hill (since it is trying to be at the desired speed) and then waste all that kinetic energy by braking while coming down the hill on the other side (since it doesn’t want to exceed the desired speed).

So far so good. Then, somebody, somewhere asked this question:

“Most trucks have GPS with the underlying map database on-board. From the map data, we know what’s ahead on the road. We know the ups-and-downs of the terrain and curves in the road. Why can’t we use this knowledge of what lies ahead to make the cruise control smarter?”

Brilliant!

They acted on this insight and created a smarter cruise-control system with “analytics inside”. This system uses the detailed map data to accelerate and brake in such a way that fuel consumption is minimized. When a hill is approaching, the system will not accelerate as much as before since it knows it will be going downhill soon and will have plenty of kinetic energy to hit the desired speed. When a curve is approaching, the system will take its foot off the gas pedal and slow down rather than wait for the driver to hit the brakes (this, of course, is a great safety feature as well).

I don’t have data on the number of miles traveled annually by freight trucks but I am sure it is not a small number. Making those trucks a tad more fuel-efficient is certain to have a big positive impact on both operating costs and the environment.

In my opinion, this is a neat example of Monday Morning Analytics. The system uses data to make a better decision (as opposed to simply identifying an “insight”). In fact, it goes one step further since it executes the better decision automatically without consulting the human decision-maker.

All the key ingredients of a modern decision-support system are present:

  • data: the truck’s precise location (thanks to the GPS) and the detailed map data. Note that simple map data isn’t enough. The data needs to include features such as terrain, road curves etc. Navteq has developed very cool technology to collect all this information and more.
  • prediction: the detailed map data is used to “predict” what lies ahead. Strictly speaking, they are not predicting as much as looking up the relevant data but the notion of using map data from the immediate horizon of the truck to project fuel-consumption and how it changes with different accelerate/brake decisions feels like predictive modeling.
  • optimization: the system finds the set of accelerate/brake/coast decisions that minimize fuel consumption while honoring the driver’s desired speed constraint. Textbook definition of optimization.

Nicely done!

Link to original post

TAGGED:privacy
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive
image fx (37)
Boosting SMS Marketing Efficiency with AI Automation
Exclusive
pexels pavel danilyuk 8112119
Data Analytics Is Revolutionizing Medical Credentialing
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Is My Data Really Mine?

7 Min Read

The APPS Act Addresses Mobile Security Concerns

3 Min Read

Why Do Once Successful Companies Fail?

7 Min Read

Revenue Science: Companies already know who they want to target

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?