Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Is there anything new in Predictive Analytics?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Is there anything new in Predictive Analytics?
Data MiningPredictive Analytics

Is there anything new in Predictive Analytics?

DeanAbbott
DeanAbbott
5 Min Read
SHARE

Federal Computer Week’s John Zyskowski posted an article on Jan 8, 2010 on Predictive Analytics entitled “Deja vu all over again: Predictive analytics look forward into the past“. (kudos for the great Yogi Berra quote! But beware, as Berra stated himself, “I really didn’t say everything I said”)

Back to Predictive Analytics…Pieter Mimno is quoted as stating:

There’s nothing new about this (Predictive Analytics). It’s just old techniques that are being done better.

To support this argument, John quotes me related to work done at DFAS 10 years ago. Is this true? Is there nothing new in predictive analytics? If it isn’t true, what is new?

I think what is new is not algorithms, but a better integration of data mining software in the business environment, primarily in two places: on the front end and on the back end. On the front end, data mining tools are better at connecting to databases now compared to 10 years ago, and provide the analyst better tools for assessing the data coming into the software. This has always been a big hurdle, and was the reason that at KDD 1999 in San Diego, the panel discussion on “Data Mining into Vertical Solutions” concluded that …

More Read

Data to the People!
Electronic textiles (e-textiles) are fabrics that have…
Why it’s a Good Thing That Google’s Data Fetish Drove Away Its Top Designer
University of Connecticut Alumni
The Smarter Enterprise and the Age of Analytics (via…


Federal Computer Week’s John Zyskowski posted an article on Jan 8, 2010 on Predictive Analytics entitled “Deja vu all over again: Predictive analytics look forward into the past“. (kudos for the great Yogi Berra quote! But beware, as Berra stated himself, “I really didn’t say everything I said”)

Back to Predictive Analytics…Pieter Mimno is quoted as stating:

There’s nothing new about this (Predictive Analytics). It’s just old techniques that are being done better.

To support this argument, John quotes me related to work done at DFAS 10 years ago. Is this true? Is there nothing new in predictive analytics? If it isn’t true, what is new?

I think what is new is not algorithms, but a better integration of data mining software in the business environment, primarily in two places: on the front end and on the back end. On the front end, data mining tools are better at connecting to databases now compared to 10 years ago, and provide the analyst better tools for assessing the data coming into the software. This has always been a big hurdle, and was the reason that at KDD 1999 in San Diego, the panel discussion on “Data Mining into Vertical Solutions” concluded that data mining functionality would be integrated into the database to a large degree. But while it hasn’t happened quite the way it was envisioned 10 years ago, it is clearly much easier to do now.

On the back end, I believe the most significant step forward in data mining tools has been giving the analyst the ability to assess models in a manner consistent with the business objectives of the model. So rather than comparing models based on R^2 or overall classification accuracy, most tools give you the ability to generate an ROI chart, or a ROC curve, or build a custom model assessment engine based on rank-ordered model predictions. This means that when we convey what models are doing to decision makers, we can do so in the language they understanding and not force them to understand how good an R^2 of 0.4 really is. And then, data mining tools are to a greater degree producing scoring code that is usable outside of the tool itself by creating SQL code, SAS code, C or Java, or PMML. What I’m waiting for next is for vendors to provide PMML or other code for all the data prep one does in the tool prior to the model itself; typically, PMML code is generated only for the model itself.

TAGGED:data miningpredictive analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Analytics Can Answer: “Why Can’t … ?

6 Min Read

PMML support is growing rapidly. From down under and into the stars!

5 Min Read

IRS Internal Migration Data and Housing Bubble

2 Min Read
AnalyticsExclusivePredictive Analytics

Predictive Analytics Solutions Bolster Crypto Trading Security in 2019

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?