Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: BI Reports, Data Quality, and the Dreaded Design Review
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > BI Reports, Data Quality, and the Dreaded Design Review
Business Intelligence

BI Reports, Data Quality, and the Dreaded Design Review

EvanLevy
EvanLevy
4 Min Read
SHARE
Business Man Asleep at Desk (Image courtesy shutterstock.com)

One of many discussions I heard over Thanksgiving turkey was, “How could the government have let the financial crisis happen?” To which the most frequent response was that regulators were asleep at the wheel. True or not, one could legitimately ask why we have problems with our business intelligence reports. The data is bad and the report is meaningless—who’s asleep at the wheel?

Everyone’s talking about the single version of the truth, but how often are our reports reviewed for accuracy? Several of our financial services clients demand that their BI reports are audited back to the source systems and that numbers are reconciled.

Unfortunately, this isn’t common practice across industries. When we work with new clients we ask about data reconciliation, but most of our new clients don’t have the methods or processes in place. It makes me wonder how engaged business users are in establishing audit and reconciliation rules for their BI capabilities. 

No, data perfection isn’t practical. But we should be able to guard against lost data and protect our users from formulas and equations that change. All too often these issues are thrown into the “post development” …

More Read

artificial intelligence and marketing tactics
Merging AI With Online Marketing For Explosive Growth
Interview- BI Dashboards dMINE Sanjay Patel
Top 3 Ways FP&A Analytics Can Get Your Financial House in Order
Open Source Analytics Reaches Main Street (and Some Other Trends in Analytics)
Retail is Dead. Long Live Retail!

Business Man Asleep at Desk (Image courtesy shutterstock.com)

One of many discussions I heard over Thanksgiving turkey was, “How could the government have let the financial crisis happen?” To which the most frequent response was that regulators were asleep at the wheel. True or not, one could legitimately ask why we have problems with our business intelligence reports. The data is bad and the report is meaningless—who’s asleep at the wheel?

Everyone’s talking about the single version of the truth, but how often are our reports reviewed for accuracy? Several of our financial services clients demand that their BI reports are audited back to the source systems and that numbers are reconciled.

Unfortunately, this isn’t common practice across industries. When we work with new clients we ask about data reconciliation, but most of our new clients don’t have the methods or processes in place. It makes me wonder how engaged business users are in establishing audit and reconciliation rules for their BI capabilities. 

No, data perfection isn’t practical. But we should be able to guard against lost data and protect our users from formulas and equations that change. All too often these issues are thrown into the “post development” bucket or relegated to User Acceptance. By then reports aren’t always corrected and data isn’t always fixed.

A robust development process should ensure that data accuracy should be established and measured throughout development. This means that design reviews are necessary before, during, and after development. Design reviews ensure that the data is continually being processed accurately. Many believe that it’s ten or more times more expensive to fix broken code (or data) after development than it is during development. And, as we’ve all seen, often the data doesn’t get fixed at all.

When you’re building a report or delivering data, ask two questions: 1) whether the numbers reflect business expectations, and 2) if they reconcile back to their system of origin. Design review processes should be instituted (or, in many cases, re-instituted) to ensure functional accuracy long before the user ever sees the data on her desktop.

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Ensuring quality data from service providers

5 Min Read

DQ-Tip: “…Go talk with the people using the data”

3 Min Read

Conducting A/B Tests: Subject Lines

3 Min Read

What use is BI without fit-for-purpose data?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?