Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Overlap in the Business Intelligence / Predictive Analytics Space
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Overlap in the Business Intelligence / Predictive Analytics Space
Business IntelligenceData MiningPredictive Analytics

Overlap in the Business Intelligence / Predictive Analytics Space

DeanAbbott
DeanAbbott
4 Min Read
SHARE

I’ve received considerable feedback on the post Business Intelligence vs. Business Analytics, which has also caused me to think more about the BI space and its overlap with data mining (DM) / predictive analytics (PA) / business analytics (BA). One place to look for this, of course, is with Gartner, how they define Business Intelligence, and which vendors overlap between these industries. (I think of this in much same way as I do DM; I look to data miners to define themselves and what they do rather than to other industries and how they define data mining.)

I found the Gartner Magic Quadrant for Business Intelligence in 2009 here, and was very curious to understand (1) how they define BI, and which BI players are also big players in the data mining space. Answering the first question, data analysis in the BI world is defined here as comprising four parts: OLAP, visualization, scorecards, and data mining. So DM in this view is a subset of BI.

Second, the key players in the quadrant interestingly contains only a few vendors I would consider to be top data mining vendors: SAS, Oracle, IBM (Cognos), and Microsoft in the “Leaders” category, and Tibco in the visionaries …



I’ve received considerable feedback on the post Business Intelligence vs. Business Analytics, which has also caused me to think more about the BI space and its overlap with data mining (DM) / predictive analytics (PA) / business analytics (BA). One place to look for this, of course, is with Gartner, how they define Business Intelligence, and which vendors overlap between these industries. (I think of this in much same way as I do DM; I look to data miners to define themselves and what they do rather than to other industries and how they define data mining.)

More Read

Website Geo-Targeting as a Forecasting and Budgeting Tool
Interactive Brokers Collegiate Olympiad
What’s that tool? It’s a MacGuffin, sir. Writing a novel about BI.
Enterprise 2.0 Pilots
Reaction Times Do Make a Difference

I found the Gartner Magic Quadrant for Business Intelligence in 2009 here, and was very curious to understand (1) how they define BI, and which BI players are also big players in the data mining space. Answering the first question, data analysis in the BI world is defined here as comprising four parts: OLAP, visualization, scorecards, and data mining. So DM in this view is a subset of BI.

Second, the key players in the quadrant interestingly contains only a few vendors I would consider to be top data mining vendors: SAS, Oracle, IBM (Cognos), and Microsoft in the “Leaders” category, and Tibco in the visionaries category. Of these, only SAS (with Enterprise Miner) and Microsoft (SQL Server) showed up in the top 10 of the Rexer Analytics 2008 software tool survey, though Tibco showed up in the top 20 (with Tibco Spotfire Miner).

I think this emphasizes again that BI and DM/PA/BA approach analysis differently, even if the end result is the same (a scorecard, dashboard, report, or transactional decisioning system).

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

AI analytics
AnalyticsArtificial IntelligenceExclusive

AI-Based Analytics Are Changing the Future of Credit Cards

6 Min Read
Real Estate
AnalyticsBig DataBusiness Intelligence

Real Estate Business Intelligence: Letting Agency Hype

4 Min Read

Reinventing the BI Solution You Already Have – A Series of Unfortunate Data Warehousing/Business Intelligence Events #1

5 Min Read

First Look – Sonetto Retail

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?