By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    customer experience analytics
    Using Data Analysis to Improve and Verify the Customer Experience and Bad Reviews
    6 Min Read
    data analytics and CRO
    Data Analytics is Crucial for Website CRO
    9 Min Read
    analytics in digital marketing
    The Importance of Analytics in Digital Marketing
    8 Min Read
    benefits of investing in employee data
    6 Ways to Use Data to Improve Employee Productivity
    8 Min Read
    Jira and zendesk usage
    Jira Service Management vs Zendesk: What Are the Differences?
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: I’ll show you mine if you show me yours…
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > I’ll show you mine if you show me yours…
Data Mining

I’ll show you mine if you show me yours…

TimManns
Last updated: 2009/09/14 at 5:38 AM
TimManns
5 Min Read
SHARE

Analysts don’t usually quote predictive model performance. Data Mining within each industry is different, and even within the telecommunications industry definitions of churn are inconsistent. This often makes reported outcomes tricky to fully understand.

I decided to post some churn model outcomes after reading a post by the enigmatic Zyxo on his (or maybe her :)) blog ;http://zyxo.wordpress.com/2009/08/29/data-mining-for-marketing-campaigns-interpretation-of-lift/

I’d like to know if the models rate well 🙂

I’d love to see reports of the performance of any predictive classification models (anything like churn models) you’ve been working on, but I realize that is unlikely… For like-minded data miners a simple lift chart might suffice.

The availability of data will greatly influence your ability to identify and predict churn (for the purpose of this post churn is defined as when good fare paying customers voluntarily leave). In this case churn outcome incidence is approx 0.5% per month, where the total population shown in each chart is a few million.

Below are two pictures of recent churn model Lift charts I built. Both models use the previous three months call summary data and the . …


Analysts don’t usually quote predictive model performance. Data Mining within each industry is different, and even within the telecommunications industry definitions of churn are inconsistent. This often makes reported outcomes tricky to fully understand.

I decided to post some churn model outcomes after reading a post by the enigmatic Zyxo on his (or maybe her :)) blog ;http://zyxo.wordpress.com/2009/08/29/data-mining-for-marketing-campaigns-interpretation-of-lift/

I’d like to know if the models rate well 🙂

I’d love to see reports of the performance of any predictive classification models (anything like churn models) you’ve been working on, but I realize that is unlikely… For like-minded data miners a simple lift chart might suffice.

The availability of data will greatly influence your ability to identify and predict churn (for the purpose of this post churn is defined as when good fare paying customers voluntarily leave). In this case churn outcome incidence is approx 0.5% per month, where the total population shown in each chart is a few million.

Below are two pictures of recent churn model Lift charts I built. Both models use the previous three months call summary data and the previous month’s social group analysis data to predict a churn event occurring in the subsequent month. Models are validated against real unseen historical data.

I’m assuming you know what a lift chart is. Basically, it shows the magnitude increase in the proportions of your target outcome (in this case churn) within small sub-groups of your total population. Sub-groups are rank/sorted by propensity. For example, in the first chart we obtain 10 times more churn in the top 1% of our customers we suspected of churning using the predictive model.

The first model is built for a customer base of prepaid (purchase recharge credit prior to use) mobile customers, where the main sources of data are usage and social network analysis.

The second model is postpaid (usage is subsequently billed to customer) mobile customers, where contract information and billing are additionally available. Obviously contracts commit customers for specified periods of time, so act as very ‘predictive’ inputs for any model.

– first churn model lift

– second churn model lift

Both charts show our model lift in blue and the best possible result in dotted red. For the first model we are obtaining a lift of approximately 6 or 7 for the top 5% population (where the best possibly outcome would be 20 (eg. (100 / 5) = 20).

The second model is significantly better, with our model able to obtain a lift of approximately 10 for the top 5% of population (half way to perfection 🙂

I mention lift at 5% population because this gives us the reasonable mailing size and catches a large number of subsequent churners.

Obviously I can’t discuss the analysis itself in any depth. I’m just curious what the first impressions are of the lift. I think its good, but I could be delusional! And just to confirm, it is real and validated against unseen data.

– enjoy!

Link to original post

TAGGED: churn model
TimManns September 14, 2009 September 14, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data protection
44% of CISOs See No New Investments to Stop Data Breaches
Big Data
AI and business
3 Ways that AI Can Help Your Small Business
Artificial Intelligence
big data in business
4 Ways to Leverage Data to Help Grow Your Business
Big Data
Cloud-Based Marketing
Smart Video Bloggers Are Leveraging Cloud-Based Marketing Tools
Cloud Computing IT Marketing

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Value at Risk Segmentation and Retention Campaigns

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?