Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Means and Proportions with two populations
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Means and Proportions with two populations
Predictive Analytics

Means and Proportions with two populations

romakanta
romakanta
7 Min Read
SHARE

Statistical inference about means and proportions with two populations seems to be one of the most commonly used applications in the field of analytics – comparing campaign response rates between 2 groups of customers, pre and post campaign sales, membership renewal rates, etc.

Call it chance or whatever, but whenever these kind of tasks came up I hear people talking about the t-tests only. No issues as long as you want to compare means or when your target variable is a continuous value. But how or why do people talk about the t-test when they want to compare ratios or proportions? Whatever happened to the Chi-Square tests or the Z-test for difference in proportions?

I did a bit of research on the net, a bit of calculation using pen and paper [very good exercise for the brain in this age of calculators and spreadsheets 🙂 ], read a very good article by Gerard E. Dallal, and I found the answers.

Going back to our introductory class in statistics, let’s check out the formulae for the t-tests.

More Read

Image
5 Steps to Setting your Big Data Goals
3 Big Data Myths for Enterprises
Musings on Watson: Why Healthcare?
Taking the question out of questionable claims
C. K. Prahalad (1941-2010) – Core Competencies and Business Analytics

1. Assuming that the population variances are equal,
T = (X1 – X2)/sqrt (Sp2(1/n1 + 1/n2) ……….Equation 1

where
X1, X2 = means of sample 1 and 2
n1, n2 = size of sample 1 and 2
Sp = pooled …


Statistical inference about means and proportions with two populations seems to be one of the most commonly used applications in the field of analytics – comparing campaign response rates between 2 groups of customers, pre and post campaign sales, membership renewal rates, etc.

Call it chance or whatever, but whenever these kind of tasks came up I hear people talking about the t-tests only. No issues as long as you want to compare means or when your target variable is a continuous value. But how or why do people talk about the t-test when they want to compare ratios or proportions? Whatever happened to the Chi-Square tests or the Z-test for difference in proportions?

I did a bit of research on the net, a bit of calculation using pen and paper [very good exercise for the brain in this age of calculators and spreadsheets 🙂 ], read a very good article by Gerard E. Dallal, and I found the answers.

Going back to our introductory class in statistics, let’s check out the formulae for the t-tests.

1. Assuming that the population variances are equal,
T = (X1 – X2)/sqrt (Sp2(1/n1 + 1/n2) ……….Equation 1

where
X1, X2 = means of sample 1 and 2
n1, n2 = size of sample 1 and 2
Sp2 = pooled variance = [((n1-1)S12+(n2-1)S22)/(n1+n2-2)]

2. Assuming that the population variances are not equal,
T = (X1 – X2)/sqrt(S12/n1 + S22/n2) ……….Equation 2

We have also been taught that the test statistic Z is used to determine the difference between two population proportions based on the difference between the two sample proportions (P1 – P2).

And the formula for the Z statistic is given by
Z = (P1 – P2)/ sqrt(P(1-P)(1/n1 + 1/n2)) ……….Equation 3

where
P1, P2 = proportions of success (or target category) in samples 1 and 2
S1, S2 = variances for samples 1 and 2
n1, n2 = size of samples 1 and 2
P = pooled estimate of the sample proportion of successes =(X1 + X2) / (n1 +n2)
X1, X2 = number of successes (or target category) in samples 1 and 2

The test statistic Z (equation 3) is equivalent to the chi- square goodness-of-fit test, also called a test of homogeneity of proportions.

But how different is the proportions from means? The proportion having the desired outcome is the number of individuals/observations with the outcome divided by total number of individuals/observations. Suppose we create a variable that equals 1 if the subject has the outcome and 0 if not. The proportion of individuals/observations with the outcome is the mean of this variable because the sum of these 0s and 1s is the number of individuals/observations with the outcome.

Let’s suppose there are m 1s and (n-m) 0s among the n observations. Then, XMean (=P) =m/n and is equal to (1-m/n) for m observations and 0-m/n for (n-m) observations. When these results are combined, the final result is

∑(Xi – XMean)2 = m(1-m/n)2 + (n – m) (0 – m/n)2
= m(1 – 2m/n + m2/n2) + (n – m) m2/n2
= m – 2(m2/n2) + (m3/n2) + (m2/n) – (m3/n2)
= m – (m2/n)
= m(1-m/n)
= nP(1-P)

So, variance = ∑(Xi – XMean)2/n = P(1-P)

Substituting this in the equation 3 (for Z statistic), we get
(P1 – P2)/ sqrt(Variance/n1 + Variance/n2)), which is not so different from equation 2 (the formula for the “equal variances not assumed” version of t test).

As long as the sample size is relatively large, the distributional assumptions are met, and the response is binomial – the t test and the z test will give p-values that are very close to one another.

And in the case where we have only two categories, the z test and the chi-square test turn out to be exactly equivalent, though the chi-square is by nature a two-tailed test. The chi-square distribution for 1 df is just the square of the z distribution.

The various tests and their assumptions as listed in Wikipedia are given below:
1. Two-sample pooled t-test, equal variances
(Normal populations or n1 + n2 > 40) and independent observations and σ1 = σ2 and (σ1 and σ2 unknown)

2. Two-sample unpooled t-test, unequal variances
(Normal populations or n1 + n2 > 40) and independent observations and σ1 ≠ σ2 and (σ1 and σ2 unknown)

3. Two-proportion z-test, equal variances
n1 p1 > 5 and n1(1 − p1) > 5 and n2 p2 > 5 and n2(1 − p2) > 5 and independent observations

4. Two-proportion z-test, unequal variances
n1 p1 > 5 and n1(1 − p1) > 5 and n2 p2 > 5 and n2(1 − p2) > 5 and independent observations

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

predictive analytics and POS use
ExclusivePredictive Analytics

Predictive Analytics Is Lifting The ROI Of POS Marketing

6 Min Read

Why Can’t We Just Use Prediction Markets?

6 Min Read
AnalyticsBest PracticesBusiness IntelligenceBusiness RulesCRMData ManagementData MiningData QualityData VisualizationData WarehousingMarketingMarketing AutomationModelingPredictive Analytics

The Enterprise Graph – From Connections To Customer Insights

24 Min Read

Storing and Mapping Your Life in 3D

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?