Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Counting with iterators
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Counting with iterators
Uncategorized

Counting with iterators

DavidMSmith
DavidMSmith
4 Min Read
SHARE

Ever wanted to do a loop in R over a million elements, but felt bad that for (i in 1e6) do.stuff(i) allocated an 8Mb vector of indices you didn’t actually need to store? That’s where iterators come in. Iterators are new to R (REvolution Computing just released the iterators package to CRAN last month), but will be familiar to programmers of languages like Java or Python. You can think of an iterator as something like a cursor or pointer to a predefined sequence of elements. Each time you access the iterator, it returns the current element being pointed to, and…

Ever wanted to do a loop in R over a million elements, but felt bad that

for (i in 1e6) do.stuff(i)

allocated an 8Mb vector of indices you didn't actually need to store? That's where iterators come in.

More Read

ParAccel’s market momentum
Vivek Kundra: The Alpha CTO
Social Strength
Virtumondo/Virtumundo – virus hunt, continued
Could this be the next big – whoops, it’s already here!
Iterators are new to R (REvolution Computing just released the iterators package to CRAN last month), but will be familiar to programmers of languages like Java or Python. You can think of an iterator as something like a cursor or pointer to a predefined sequence of elements. Each time you access the iterator, it returns the current element being pointed to, and advances to the next one. 

This is probably easier to explain with an example. We can create an iterator for a sequence of integers 1 to 5 with the icount function:

> require(iterators)
Loading required package: iterators
> i <- icount(5)

The function nextElem returns the current value of the iterator, and advances it to the next. Iterators created with icount always start at 1:

> nextElem(i)
[1] 1
> nextElem(i)
[1] 2
> nextElem(i)
[1] 3
 
When an iterator runs out of values to return, it signals an error:

> nextElem(i)
[1] 4
> nextElem(i)
[1] 5
> nextElem(i)
Error: StopIteration

So, if we wanted to make a loop of a million iterations, all we need to do is make an iterator and then loop using the foreach function (from the foreach package):

> require(foreach)

Loading required package: foreach
> m <- icount(1e6)
> foreach (i = m) %do% { do.stuff(i) }

One nice thing about this construction is that m is a very small object: you don't need to waste a bunch of RAM on index values you only need one at a time. The other nice thing is that by replacing %do% with %dopar% you can run multiple iterations in parallel. Because the iterator m is shared amongst all the parallel instances, it guarantees that i takes each value between one and a million exactly once across all the iterations, even if they don't necessarily complete in sequence.

An iterator isn't constrained to simply return integers, either. You can set up an iterator on a matrix, so that each call to nextElem returns the next row (or column) as a vector. Or, you can set up an iterator on a MySQL or Oracle database, so that each call to nextElem returns the next record in the table. Iterators can even return infinite, irregular sequences — the sequence of all primes, for examples. You can see examples of all these kinds of iterators in my recent UseR! talk. 

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Mark Madsen’s three indications of uselessness

4 Min Read
Image
Uncategorized

Careful: Don’t Drown in Your Data Lake!

7 Min Read
Image
Uncategorized

The Race to the Internet of Things is a Marathon

9 Min Read

Smarter Cruise Control With Analytics

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?