Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How people use Twitter – 10 distinct usage groups
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > How people use Twitter – 10 distinct usage groups
Data Mining

How people use Twitter – 10 distinct usage groups

ThemosKalafatis
ThemosKalafatis
4 Min Read
SHARE
In this post we will look at another example of cluster analysis performed on Twitter. The analysis was performed on 17000 Twitter users with the goal of extracting distinct groups of usage which essentially shows us the different types of Usage behavior of Twitter users. The following parameters were taken under consideration :
  • Number of Followers
  • Number of Links posted per 20 Tweets (not during RT)
  • Number of Updates
  • Elapsed Days

The following table shows the results :

Note that each cluster has a specific number from 1 to 10. Clusters are listed according to their size, which means that cluster “10” is the largest usage group, while cluster “5” being the smallest.

Let’s see what the table tells us, starting with the first line: Cluster 10, is the largest (=more frequent) type of usage behavior. Users of that group have an average number of followers; have been using Twitter for relatively many days (elapsedDays=high); have a high number of updates; while the number of links they provide per 20 tweets is average – say around 3 links.

Now consider – highlighted – Cluster 8, which we will call The Information providers: Notice that even though this group of users have relatively few…

In this post we will look at another example of cluster analysis performed on Twitter. The analysis was performed on 17000 Twitter users with the goal of extracting distinct groups of usage which essentially shows us the different types of Usage behavior of Twitter users. The following parameters were taken under consideration :
  • Number of Followers
  • Number of Links posted per 20 Tweets (not during RT)
  • Number of Updates
  • Elapsed Days

The following table shows the results :

Note that each cluster has a specific number from 1 to 10. Clusters are listed according to their size, which means that cluster “10” is the largest usage group, while cluster “5” being the smallest.

Let’s see what the table tells us, starting with the first line: Cluster 10, is the largest (=more frequent) type of usage behavior. Users of that group have an average number of followers; have been using Twitter for relatively many days (elapsedDays=high); have a high number of updates; while the number of links they provide per 20 tweets is average – say around 3 links.

Now consider – highlighted – Cluster 8, which we will call The Information providers: Notice that even though this group of users have relatively few elapsed days and average number of updates, they achieve a High number of followers. The reason is that these users provide a large number of links per 20 Tweets ( Note that this confirms findings during a previous analysis).

See also Cluster 3: Even though this group of users has been on Twitter for many days and also has a high number of updates, it appears that it pays a price for not providing links.

Recall that the “#OfLinks” parameter counts only these links that are NOT part of a Retweet. This tells us that users that are able to find original content and provide it to the community tend to gain more followers.

This analysis was given with the aim of providing a simple example and should not be considered as a detailed analysis since few parameters have been taken into account. Cluster Analysis on Twitter data (which include things that people like doing, professions, interests, marital status, mention of products or opinions to name a few) can – potentially – give us excellent insights on different aspects of user behavior.

Link to original post

TAGGED:twitter analysis
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive
image fx (37)
Boosting SMS Marketing Efficiency with AI Automation
Exclusive
pexels pavel danilyuk 8112119
Data Analytics Is Revolutionizing Medical Credentialing
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Twitter Analytics : Which usage behavior attracts many followers?

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?