Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Five Features of Effective Filters
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Five Features of Effective Filters
Uncategorized

Five Features of Effective Filters

JuiceAnalytics
JuiceAnalytics
6 Min Read
SHARE

I’ve developed a bit of a penchant (obsession?) for decomposing the pieces of analytical applications and framing the good and the bad characteristics. So far I’ve taken on treemaps, real-time dashboards, alerts, composite measures, success metrics.

Contents
SelectionsSelectionsImpactContextPersistenceShort-cuts

Next up the poor, neglected, and taken-for-granted filter. For such a common and essential component, it seems rare that designers take a moment to consider how to make the best possible filtering mechanism. Here are the five elements I consider critical to a good filter selector along with examples from exemplary interface designs.

  1. Selections
  2. Impact
  3. Context
  4. Persistence
  5. Short-cuts

Selections

Good filters make it obvious to users what has been selected. That might seem like an obvious necessity but consider what happens when you filter in an Excel list. The filter section, even if it is a single item, is immediately hidden from view.

Jonathan Harris’ frequently referenced We Feel Fine visualization offers one of my favorite filtering examples. Notice how the selected items are highlighted and the non-selected items are de-emphasized. The bar at the top clearly shows what has been selected, even after the filter …

More Read

Capturing Knowledge, and Making in ‘Transferable’ (3 of 4)
Microsoft: ‘we’re bringing SOA to the masses’
The First Flinch…Amazon gives in just a little bit
Google reader on the phone
The Prince of Data Governance

I’ve developed a bit of a penchant (obsession?) for decomposing the pieces of analytical applications and framing the good and the bad characteristics. So far I’ve taken on treemaps, real-time dashboards, alerts, composite measures, success metrics.

Next up the poor, neglected, and taken-for-granted filter. For such a common and essential component, it seems rare that designers take a moment to consider how to make the best possible filtering mechanism. Here are the five elements I consider critical to a good filter selector along with examples from exemplary interface designs.

  1. Selections
  2. Impact
  3. Context
  4. Persistence
  5. Short-cuts

Selections

Good filters make it obvious to users what has been selected. That might seem like an obvious necessity but consider what happens when you filter in an Excel list. The filter section, even if it is a single item, is immediately hidden from view.

Jonathan Harris’ frequently referenced We Feel Fine visualization offers one of my favorite filtering examples. Notice how the selected items are highlighted and the non-selected items are de-emphasized. The bar at the top clearly shows what has been selected, even after the filter selector is “put away.”

We Feel Fine

Impact

The best filtering mechanisms also give instant feedback about the impact of your filters. This can be as simple as a subtle indicator that the filters are being applied. Even better, as demonstrated in the The New York Times’ Rent or Buy site, the graph animates in real-time as filters are applied. This creates a very tangible connection that helps the user understand the impact of the filtering choices.

NY Times Rent or Buy

Context

Filters should provide information around the items being selected. What does it look like? How many are there? Take the simple font selector in Office applications: Isn’t it a no brainer that the names of the options are shown in the actual typeface? Here are a couple other fine examples of context:

Click shirt is Bret Victor’s brilliant t-shirt design interface. In it, he offers an elegant filter implementation where all the selections show images of what you are about to select.
Click Shirt

Elastic lists is one of the most innovative approaches to filtering. The height of individual blocks in the selectable stack shows the frequency of the items, an embedded sparkline shows the trend, and brightness indicates “weight of the metadata value compared to the overall distribution” (a bit too ambitious/confusing, in my view).

Elastic Lists

Persistence

Given the importance of filters to most information applications, it is surprising how often the interface makes them hard to find. As I mentioned in an earlier post, the failure of many analytical and reporting applications is that “they assume users know precisely what they need before they’ve begun the analysis.” Filtering shouldn’t be a one shot deal; the functionality should always be accessible.

Kayak, a travel site, integrated the selection filters into the results so users can easily change their trip criteria without having to start a new search.

Kayak

Short-cuts

Finally, filters should make it easy to apply common selections (All, None) or complex sets (My Saved Filters, Northwest Region).

Moodstream by Getty Images recognizes that users aren’t always going to want to configure a bunch of filters individually. The presets wheel solves this problem by offering a series of pre-defined “filter sets.”

Moodstream


Finally, I’d be remiss if I didn’t mention the sophisticated and powerful filtering functionality delivered in Tableau. In addition to providing filtering by selecting graphs (i.e. in context filtering), the application allows for multiple selector types, wild-carding, conditional filters, top/bottom filters, and on and on. If you want a comprehensive catalog of potential ways to offer filtering, watch the Filter Data video here.

 Link to original post

TAGGED:filters
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

#13: Here’s a thought…

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?