Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Rise of the Columnar Database
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > The Rise of the Columnar Database
Data Mining

The Rise of the Columnar Database

EvanLevy
EvanLevy
5 Min Read
SHARE
Column_eflon
photo by eflon

I’m continually surprised that more vendors haven’t hurled themselves onto the columnar database bandwagon. The more this space matures, the more evident it becomes that analytics is a perfect match for column-based database architectures.

One of the most frustrating phenomena to IT is adherence to a theoretical view. In the 1970s the entire relational database industry implemented what was really an academic precept. For those pragmatists who haven’t dusted off their textbooks recently, I’ll recall the writings of Codd and Date. They introduced the concepts of organizing data in tuples, organizing primary values along with their descriptive details (aka: attributes). Vendors interpreted this to mean that data should be physically stored in this fashion, architecting their products to store data in tables, populated with rows consisting of columns. If you wanted to access a value, you had to retrieve the entire row.

With all due respect, this approach has been cumbersome since Day 1. The fact is, storing data the way the business looks doesn’t lend itself to the way people ask questions. When I create an outbound marketing list, I need a name, a phone number, and…

More Read

Image
How Big Data Can Improve Manufacturing Quality
A Website in less than a hour
Wolfman vs. Googzilla
“Political prediction markets — in which participants buy and sell “contracts”…”
Shedding Light on Dark Data: How to Get Started

Column_eflon
photo by eflon

I’m continually surprised that more vendors haven’t hurled themselves onto the columnar database bandwagon. The more this space matures, the more evident it becomes that analytics is a perfect match for column-based database architectures.

One of the most frustrating phenomena to IT is adherence to a theoretical view. In the 1970s the entire relational database industry implemented what was really an academic precept. For those pragmatists who haven’t dusted off their textbooks recently, I’ll recall the writings of Codd and Date. They introduced the concepts of organizing data in tuples, organizing primary values along with their descriptive details (aka: attributes). Vendors interpreted this to mean that data should be physically stored in this fashion, architecting their products to store data in tables, populated with rows consisting of columns. If you wanted to access a value, you had to retrieve the entire row.

With all due respect, this approach has been cumbersome since Day 1. The fact is, storing data the way the business looks doesn’t lend itself to the way people ask questions. When I create an outbound marketing list, I need a name, a phone number, and an address. I don’t need information on household, demographic segment, or the name of a customer’s dog.

While I do need to store all the customer data, I don’t want to be bogged down by processing all that data in order to answer my question. Herein lies the quandary: do I structure the data based on all the information we have, or based on the information I might access?

Vendors have tried to bridge the gap. We’ve seen partitioning, star indexes, query pre-processing, bitmap and index joins, and even hashing in an attempt to support more specific data retrieval. Such solutions still require examining the contents of the entire row.

Although my background is in engineering, I know enough about Occam’s razor to know that it applies here: the simplest solution is the best one. Vendors like Kickfire, Vertica, Paraccel, and Sybase — whose pioneering IQ product launched over a dozen years ago — went back to the drawing board and fixed the problem, architecting their products structure and store the data the way people ask questions — in columns.

For you SQL jockeys, most of the heavy-lifting in database processing is in the where clause. Columnar databases are faster because their processing isn’t inhibited by unnecessary row content. Because many database tables can have upwards of 100 columns, and because most business questions only request a handful of them, this just makes business sense. And In these days of multi-billion row tables and petabyte-sized systems, columnar databases make more sense than ever.

As the data warehouse market continues to consolidate through acquisitions, look for column-based startups — including several open-source solutions — to fill the void. If you ask me, there’s plenty of room.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive
car expense data analytics
Data Analytics for Smarter Vehicle Expense Management
Analytics Exclusive
using accrual data to improve financial forecasts
Using Accrual Data to Improve Financial Forecasts
Big Data Exclusive
image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Interview: Roger Haddad, Founder of KXEN Automated Modeling Software

6 Min Read

Warranty Management – New rules to apply

4 Min Read

MicroStrain continues its winning streak with its Shear-Link…

2 Min Read

Improvement Project for Services; Remember You’re Never Really Done

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?