By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Catching Up With Hunch
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Catching Up With Hunch
Business Intelligence

Catching Up With Hunch

Daniel Tunkelang
Last updated: 2009/05/11 at 6:40 PM
Daniel Tunkelang
5 Min Read
SHARE

Last week, I stopped by the Hunch office to learn more about what they’re doing, as well as to contribute my own thoughts about socially enhanced decision making. I consider Hunch, like Aardvark, to be an example of social search, but I recognize that I use the term in a broad sense. Perhaps, as Jeremy suggests, it’s better to think of social search and collaborative search being different aspects of multi-person search.

In any case, Hunch is doing some interesting things. Their mission, roughly speaking, is to become a Wikipedia for decision making. They are inspired by human computation success stories like 20Q.net and presumably the ESP Game. Their general approach is to learn about people by asking them multiple-choice questions that help cluster them demographically (”Teach Hunch About You”), and then to create customized decision trees to help people find their own answers to questions. The questions themselves are crowd-sourced from users (though now they are vetted first in a “workshop”).

They’re learning as they go along. For example, they’ve recognized that it’s important to distinguish between objective questions (e.g., concerning the price of a product) and…

More Read

Do Predictive Modelers Need to Know Math?

Scale, Structure and Semantics
How to Improve Predictive Accuracy? (Part 1)
Faceted Search Presentation at New York CTO Club
The challenge of creating a new category

Last week, I stopped by the Hunch office to learn more about what they’re doing, as well as to contribute my own thoughts about socially enhanced decision making. I consider Hunch, like Aardvark, to be an example of social search, but I recognize that I use the term in a broad sense. Perhaps, as Jeremy suggests, it’s better to think of social search and collaborative search being different aspects of multi-person search.

In any case, Hunch is doing some interesting things. Their mission, roughly speaking, is to become a Wikipedia for decision making. They are inspired by human computation success stories like 20Q.net and presumably the ESP Game. Their general approach is to learn about people by asking them multiple-choice questions that help cluster them demographically (”Teach Hunch About You”), and then to create customized decision trees to help people find their own answers to questions. The questions themselves are crowd-sourced from users (though now they are vetted first in a “workshop”).

They’re learning as they go along. For example, they’ve recognized that it’s important to distinguish between objective questions (e.g., concerning the price of a product) and questions of taste (e.g., what is art?). They’re also experimenting with interface tweaks, including giving users more control over what information their algorithms use to rank potential answers, and allowing users to short-circuit the decision tree at any time by skipping to the end.

Perhaps of particular interest to readers here, they’ve made an API available, which you can also play with in a widget on their blog.

As I told my friend at Hunch, I’m still skeptical about decision trees. Maybe I’m a bit too biased toward faceted search, but I don’t like having such a rigid decision making process. Apparently they’re not wedded to decision trees, but they are understandably concerned about creating a richer interface that might turn off or  intimidates ordinary users. I can’t deny that decision trees are simple to use, and I can’t argue with their 77% success rate.

Still, the rigidity of a decision tree leaves me a bit cold. Even if it leads me to the right choice, it doesn’t give me the necessary faith in that choice. Transparency helps, and I like that you can click on “Why did Hunch pick this?” to see what in your question-specific or personal profile led Hunch to recommend that answer. But I’d like more freedom and less hand-holding.

I still have a handful of invites; let me know if you’re interested. As usual, first come, first serve.

Link to original post

TAGGED: aardvark, decision trees, faceted search, hunch, social search
Daniel Tunkelang May 11, 2009 May 11, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data and IP laws
Big Data & AI In Collision Course With IP Laws – A Complete Guide
Big Data
ai in marketing
4 Ways AI Can Enhance Your Marketing Strategies
Marketing
sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Do Predictive Modelers Need to Know Math?

6 Min Read

Scale, Structure and Semantics

2 Min Read

How to Improve Predictive Accuracy? (Part 1)

6 Min Read

Faceted Search Presentation at New York CTO Club

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?