Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Taking Assumptions With A Grain Of Salt
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Taking Assumptions With A Grain Of Salt
Data MiningPredictive Analytics

Taking Assumptions With A Grain Of Salt

Editor SDC
Editor SDC
4 Min Read
SHARE

Occasionally, I come across descriptions of clustering or modeling techniques which include mention of “assumptions” being made by the algorithm. The “assumption” of normal errors from the linear model in least-squares regression is a good example. The “assumption” of Gaussian-distributed classes in discriminant analysis is another. I imagine that such assertions must leave novices with some questions and hesitation. What happens if these assumptions are not met? Can techniques ever be used if their assumptions are not tested and met? How badly can the assumption be broken before things go horribly wrong? It is important to understand the implications of these assumptions, and how they affect analysis.

In fact, the assumptions being made are made by the theorist who designed the algorithm, not the algorithm itself. Most often, such assumptions are necessary for some proof of optimality to hold. Considering myself the practical sort, I do not worry too much about these assumptions. What matters to me and my clients is how well the model works in practice (which can be assessed via test data), not how well its assumptions are met. Generally, such assumptions are rarely, if…


Occasionally, I come across descriptions of clustering or modeling techniques which include mention of “assumptions” being made by the algorithm. The “assumption” of normal errors from the linear model in least-squares regression is a good example. The “assumption” of Gaussian-distributed classes in discriminant analysis is another. I imagine that such assertions must leave novices with some questions and hesitation. What happens if these assumptions are not met? Can techniques ever be used if their assumptions are not tested and met? How badly can the assumption be broken before things go horribly wrong? It is important to understand the implications of these assumptions, and how they affect analysis.

In fact, the assumptions being made are made by the theorist who designed the algorithm, not the algorithm itself. Most often, such assumptions are necessary for some proof of optimality to hold. Considering myself the practical sort, I do not worry too much about these assumptions. What matters to me and my clients is how well the model works in practice (which can be assessed via test data), not how well its assumptions are met. Generally, such assumptions are rarely, if ever, strictly met in practice, and most of these algorithms do reasonably well even under such circumstances. A particular modeling algorithm may well be the best one available, despite not having its assumptions met.

More Read

Big Data, Unstructured Information Analysis is More Than Sentiment.
Know Me and Be Relevant: What I learned from Disney’s Keynote at NCDM
Big Data and the Call for Evidence-based Management
History
Customer Churn and Retention

My advice is to be aware of these assumptions to better understand the behavior of the algorithms one is using. Evaluate the performance of a specific modeling technique, not by looking back to its assumptions, but by looking forward to expected behavior, as indicated by rigorous out-of-sample and out-of-time testing.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Data Mining Research Interview: Stuart Shulman

5 Min Read
predictive analytics for interior designers
AnalyticsExclusivePredictive Analytics

Interior Designers Boost Profits with Predictive Analytics

8 Min Read

Is Big Data Causing a Big Brother System in Healthcare?

6 Min Read

Transforming 100 Blog Posts into 1 Wordle

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?