Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: AmazonFail = TaxonomyFail?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > AmazonFail = TaxonomyFail?
Uncategorized

AmazonFail = TaxonomyFail?

Daniel Tunkelang
Daniel Tunkelang
3 Min Read
SHARE

By now, #amazonfail seems like old news (yesterday’s detwitus?), though apparently Amazon’s PR folks are still doing damage control.

But what intrigues me was something in Clay Shirky’s nostra culpa post comparing the collective outrage against Amazon to the Tawana Brawley incident. While the post on a whole did not move me (perhaps because I don’t have any guilt to atone for), I did see a valuable nugget:

The problems they have with labeling and handling contested categories is a problem with all categorization systems since the world began. Metadata is worldview; sorting is a political act. Amazon would love to avoid those problems if they could – who needs the tsouris? — but they can’t. No one gets cataloging “right” in any perfect sense, and no algorithm returns the “correct” results. We know that, because we see it every day, in every large-scale system we use. No set of labels or algorithms solves anything once and for all; any working system for showing data to the user is a bag of optimizations and tradeoffs that are a lot worse than some Platonic ideal, but a lot better than nothing.

Indeed, perhaps the problem is that Amazon relies too mu…

More Read

The Banality of Crowds
Disputed history of the term Business Intelligence
You’re So Vain, You Probably Think Data Quality Is About You
Books on my desk…
Records Retention for Industrial Manufacturers

By now, #amazonfail seems like old news (yesterday’s detwitus?), though apparently Amazon’s PR folks are still doing damage control.

But what intrigues me was something in Clay Shirky’s nostra culpa post comparing the collective outrage against Amazon to the Tawana Brawley incident. While the post on a whole did not move me (perhaps because I don’t have any guilt to atone for), I did see a valuable nugget:

The problems they have with labeling and handling contested categories is a problem with all categorization systems since the world began. Metadata is worldview; sorting is a political act. Amazon would love to avoid those problems if they could – who needs the tsouris? — but they can’t. No one gets cataloging “right” in any perfect sense, and no algorithm returns the “correct” results. We know that, because we see it every day, in every large-scale system we use. No set of labels or algorithms solves anything once and for all; any working system for showing data to the user is a bag of optimizations and tradeoffs that are a lot worse than some Platonic ideal, but a lot better than nothing.

Indeed, perhaps the problem is that Amazon relies too much on algorithmic cleverness when it should be taking a more transparent HCIR approach. Perhaps not what Shirky was after, but it’s consistent with all of the versions I’ve heard of what went wrong.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

dd

0 Min Read
Image
Uncategorized

The Importance of BI Specific Skill Sets

4 Min Read

Marketers Using Social Media: Do they Get it or are they Panicking?

5 Min Read
Image
Uncategorized

Stupid Analytics Gets Them Talking

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?