Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Unreasonable Effectiveness of Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The Unreasonable Effectiveness of Data
Uncategorized

The Unreasonable Effectiveness of Data

Daniel Tunkelang
Daniel Tunkelang
4 Min Read
SHARE

Over the past week, there’s been lots of commentary about “The Unreasonable Effectiveness of Data“, an article by Googlers Alon Halevy, Peter Norvig, and Fernando Pereira in the most recent issue of IEEE Intelligent Systems.

Here are a few posts that have been appearing in my RSS reader:

  • Geeking with Greg: Semantic interpretation and the effectiveness of big data
  • Jeff’s Search Engine Caffe: Statistical Learning of Semantics from Web Data
  • Matthew Hurst: Strings are not Meanings
  • Stefano’s Linotype: Unreasonable Hypocrisy

I’m intrigued by the amount of attention this paper has attracted–especially the vitriol in this Stefano’s post:

What upset me about that paper is not how they say “oh sure, structure is great, but look overhere: there is a goldmine in all the sand” (which is something I fully resonate with) but they phrased it as a fight, deterministic vs. statistical, trying to convince people that adding structure it not the way to go, it’s basically a global waste of research resources.

And yet, without the <a> tag (that is: machine-readable imposed structure), they wouldn’t be where they are, not they would be able to speak from…

More Read

Wolfram Alpha: First-Hand Impressions
Collective knowledge systems
The Boston Globe
The Future of Work: 3-D Learning
Big Data Analytics: Unlock Breakthrough Results – Step 2

Over the past week, there’s been lots of commentary about “The Unreasonable Effectiveness of Data“, an article by Googlers Alon Halevy, Peter Norvig, and Fernando Pereira in the most recent issue of IEEE Intelligent Systems.

Here are a few posts that have been appearing in my RSS reader:

  • Geeking with Greg: Semantic interpretation and the effectiveness of big data
  • Jeff’s Search Engine Caffe: Statistical Learning of Semantics from Web Data
  • Matthew Hurst: Strings are not Meanings
  • Stefano’s Linotype: Unreasonable Hypocrisy

I’m intrigued by the amount of attention this paper has attracted–especially the vitriol in this Stefano’s post:

What upset me about that paper is not how they say “oh sure, structure is great, but look overhere: there is a goldmine in all the sand” (which is something I fully resonate with) but they phrased it as a fight, deterministic vs. statistical, trying to convince people that adding structure it not the way to go, it’s basically a global waste of research resources.

And yet, without the <a> tag (that is: machine-readable imposed structure), they wouldn’t be where they are, not they would be able to speak from such a tall soapbox.

I’m actually sympathetic to the view that it’s usually better to have more data than heavier theoretical machinery. But I’ve seen this view taken to an extreme so absurd as to be worthy of an April Fool’s joke–in Chris Anderson’s Wired article about “The End of Theory“. Moreover, that same article quotes Peter Norvig as saying that “All models are wrong, and increasingly you can succeed without them.”

So perhaps Stefano is right to react so harshly.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Facebook estimates $350 million in 2009 from Performance Advertising

3 Min Read

Here to Stay

4 Min Read

How Google’s new “answer” machine could rock Web business

2 Min Read

Some thoughts on SEO

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?