By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The Unreasonable Effectiveness of Data
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The Unreasonable Effectiveness of Data
Uncategorized

The Unreasonable Effectiveness of Data

Daniel Tunkelang
Last updated: 2009/04/01 at 2:14 AM
Daniel Tunkelang
4 Min Read
SHARE

Over the past week, there’s been lots of commentary about “The Unreasonable Effectiveness of Data“, an article by Googlers Alon Halevy, Peter Norvig, and Fernando Pereira in the most recent issue of IEEE Intelligent Systems.

Here are a few posts that have been appearing in my RSS reader:

  • Geeking with Greg: Semantic interpretation and the effectiveness of big data
  • Jeff’s Search Engine Caffe: Statistical Learning of Semantics from Web Data
  • Matthew Hurst: Strings are not Meanings
  • Stefano’s Linotype: Unreasonable Hypocrisy

I’m intrigued by the amount of attention this paper has attracted–especially the vitriol in this Stefano’s post:

What upset me about that paper is not how they say “oh sure, structure is great, but look overhere: there is a goldmine in all the sand” (which is something I fully resonate with) but they phrased it as a fight, deterministic vs. statistical, trying to convince people that adding structure it not the way to go, it’s basically a global waste of research resources.

More Read

big data improves

3 Ways Big Data Improves Leadership Within Companies

IT Is Not Analytics. Here’s Why.
Romney Invokes Analytics in Rebuke of Trump
WEF Davos 2016: Top 100 CEO bloggers
In Memoriam: Robin Fray Carey

And yet, without the <a> tag (that is: machine-readable imposed structure), they wouldn’t be where they are, not they would be able to speak from…

Over the past week, there’s been lots of commentary about “The Unreasonable Effectiveness of Data“, an article by Googlers Alon Halevy, Peter Norvig, and Fernando Pereira in the most recent issue of IEEE Intelligent Systems.

Here are a few posts that have been appearing in my RSS reader:

  • Geeking with Greg: Semantic interpretation and the effectiveness of big data
  • Jeff’s Search Engine Caffe: Statistical Learning of Semantics from Web Data
  • Matthew Hurst: Strings are not Meanings
  • Stefano’s Linotype: Unreasonable Hypocrisy

I’m intrigued by the amount of attention this paper has attracted–especially the vitriol in this Stefano’s post:

What upset me about that paper is not how they say “oh sure, structure is great, but look overhere: there is a goldmine in all the sand” (which is something I fully resonate with) but they phrased it as a fight, deterministic vs. statistical, trying to convince people that adding structure it not the way to go, it’s basically a global waste of research resources.

And yet, without the <a> tag (that is: machine-readable imposed structure), they wouldn’t be where they are, not they would be able to speak from such a tall soapbox.

I’m actually sympathetic to the view that it’s usually better to have more data than heavier theoretical machinery. But I’ve seen this view taken to an extreme so absurd as to be worthy of an April Fool’s joke–in Chris Anderson’s Wired article about “The End of Theory“. Moreover, that same article quotes Peter Norvig as saying that “All models are wrong, and increasingly you can succeed without them.”

So perhaps Stefano is right to react so harshly.

Link to original post

Daniel Tunkelang April 1, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence
data Analytics instagram stories
Data Analytics Helps Marketers Make the Most of Instagram Stories
Analytics
data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

big data improves
Big DataJobsKnowledge ManagementUncategorized

3 Ways Big Data Improves Leadership Within Companies

6 Min Read
Image
Uncategorized

IT Is Not Analytics. Here’s Why.

7 Min Read

Romney Invokes Analytics in Rebuke of Trump

4 Min Read

WEF Davos 2016: Top 100 CEO bloggers

14 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?