Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: You’re So Vain, You Probably Think Data Quality Is About You
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > You’re So Vain, You Probably Think Data Quality Is About You
Uncategorized

You’re So Vain, You Probably Think Data Quality Is About You

JimHarris
JimHarris
5 Min Read
SHARE

Don’t you?

“Data Quality is an IT issue because information is stored in databases and applications that they manage. Therefore, if there are problems with the data, then IT is responsible for cleaning up their own mess.”

“Data Quality is a Business issue because information is created by business processes and users that they manage. Therefore, if there are problems with the data, then the Business is responsible for cleaning up their own mess.”

In response to these common viewpoints (channeling the poet Walt Whitman), I sound my barbaric yawp over the roofs of the world:

“Data Quality is not an IT issue. Data Quality is not a Business issue. Data Quality is everyone’s issue.”

Unsuccessful data quality projects are most often characterized by the Business meeting independently to define the requirements and IT meeting independently to write the specifications.  Typically, IT then follows the all too common mantra of “code it, test it, implement it into production, and declare victory” that leaves the Business frustrated with the resulting “solution.”

Successful data quality projects are driven by an executive management mandate for the Business and …

More Read

Make it Conversational
Text Analytics Gurus Debunk 4 Big Data Myths
Making the Most of Your Traffic and Exposure
The Evolution of “What is Data Science?”
Reflecting on AltaVista

Don’t you?

“Data Quality is an IT issue because information is stored in databases and applications that they manage. Therefore, if there are problems with the data, then IT is responsible for cleaning up their own mess.”

“Data Quality is a Business issue because information is created by business processes and users that they manage. Therefore, if there are problems with the data, then the Business is responsible for cleaning up their own mess.”

In response to these common viewpoints (channeling the poet Walt Whitman), I sound my barbaric yawp over the roofs of the world:

“Data Quality is not an IT issue. Data Quality is not a Business issue. Data Quality is everyone’s issue.”

Unsuccessful data quality projects are most often characterized by the Business meeting independently to define the requirements and IT meeting independently to write the specifications.  Typically, IT then follows the all too common mantra of “code it, test it, implement it into production, and declare victory” that leaves the Business frustrated with the resulting “solution.”

Successful data quality projects are driven by an executive management mandate for the Business and IT to forge an ongoing and iterative collaboration throughout the entire project. The Business usually owns the data and understands its meaning and use in the day to day operation of the enterprise and must partner with IT in defining the necessary data quality standards and processes.

Here are some recommendations for fostering collaboration on your data quality project:

  • Provide Leadership – not only does the project require an executive sponsor to provide oversight and arbitrate any issues of organization politics, but the Business and IT must each designate a team leader for the initiative.  Choose these leaders wisely.  The best choice is not necessarily those with the most seniority or authority.  You must choose leaders who know how to listen well, foster open communication without bias, seek mutual understanding on difficult issues, and truly believe it is the people involved that make projects successful.  Your team leaders should also collectively meet with the executive sponsor on a regular basis in order to demonstrate to the entire project team that collaboration is an imperative to be taken seriously.

  • Formalize the Relationship – consider creating a service level agreement (SLA) where the Business views IT as a supplier and IT views the Business as a customer.  However, there is no need to get the lawyers involved.  My point is that this internal strategic partnership should be viewed no differently than an external one.  Remember that you are formalizing a relationship based on mutual trust and cooperation.

  • Share Ideas – foster an environment in which a diversity of viewpoints is freely shared without prejudice.  For example, the Business often has practical insight on application development tasks, and IT often has a pragmatic view about Business processes.  Consider including everyone as optional invitees to meetings.  You may be pleasantly surprised at how often people not only attend but also make meaningful contributions.  Remember that you are all in this together.

Data quality is not about you.  Data quality is about us.

I believe in us. 

Don’t you?

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

rise of blockchain technology shaping big data
Big DataBlockchainData ManagementData QualityExclusivePrivacySecurity

What Does The Rise of Blockchain Technology Mean For Big Data?

6 Min Read

A Portrait of the Data Quality Expert as a Young Idiot

3 Min Read

Persistence

7 Min Read

Data Quality – Everyone is a Stakeholder

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?