Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Reducing False Positives in Customer Screening
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Reducing False Positives in Customer Screening
Business Intelligence

Reducing False Positives in Customer Screening

Editor SDC
Editor SDC
4 Min Read
SHARE

False positives are the scourge of the Money Laundering Reporting Officer (MLRO) responsible for protecting the reputation and security of a financial institution.  Every occurrence of a client record matching to a name on a sanction, risk or PEP register has to be investigated; the review and research of false positives costs institutions time and manual effort.  “Fuzzy” techniques are essential to find inexact matches, but they often produce large numbers of records for review and the vast majority of these will be false positives.

Contents
  • Achieving a Balance
  • Achieving a Balance

With some institutions swamped by the volume of false positives, the temptation to tighten match rules can be irresistible.  But whilst this might reduce the immediate pain of so many false positives, it often increases the probability of a more insidious risk, that of false negatives.  Whilst false positives cost time and effort, false negatives allow criminals access to the financial system and can result in fines for the institution and the MLRO as well as a loss of commercial reputation.

 

Achieving a Balance

Financial institutions are instructed to take a risk-based approach to anti-money laundering (AML).  But the regulators have also shown that the…

More Read

Protecting Email Reputation Locally and Globally
How to Stay Out of Cash Flow Crises Using Cash Position Analysis
Is Performance Management Art, Craft or Science?
Key Reasons Businesses Are Embracing AI
Decisioning in Volatile Times—Probability, Intuition or Inaction?

False positives are the scourge of the Money Laundering Reporting Officer (MLRO) responsible for protecting the reputation and security of a financial institution.  Every occurrence of a client record matching to a name on a sanction, risk or PEP register has to be investigated; the review and research of false positives costs institutions time and manual effort.  “Fuzzy” techniques are essential to find inexact matches, but they often produce large numbers of records for review and the vast majority of these will be false positives.

With some institutions swamped by the volume of false positives, the temptation to tighten match rules can be irresistible.  But whilst this might reduce the immediate pain of so many false positives, it often increases the probability of a more insidious risk, that of false negatives.  Whilst false positives cost time and effort, false negatives allow criminals access to the financial system and can result in fines for the institution and the MLRO as well as a loss of commercial reputation.

 

Achieving a Balance

Financial institutions are instructed to take a risk-based approach to anti-money laundering (AML).  But the regulators have also shown that they are willing to flex their muscles if they judge that an MLRO is failing to take adequate steps to implement adequate AML procedures, including the accurate screening of clients.  No screening system can produce perfect results, so the challenge facing the MLRO is to implement a solution that produces minimal false positives without increasing the risk of missing genuine matches.

With simple matching approaches, there is a direct relationship between the number of false positives and the number of false negatives; decreasing one leads to an increase in the other.  Thankfully, there are ways of decreasing the number of false positives without increasing the risk of false negatives. 

TAGGED:compliancefalse positives
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Prince of Data Governance

6 Min Read

A Sustainability Storm is Brewing for BI

4 Min Read

Celebrate Corporate Compliance and Ethics Week!

3 Min Read

Are Security Pros Becoming Too Paranoid?

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?