Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Experimenting on Facebook
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Experimenting on Facebook
Data MiningPredictive Analytics

Experimenting on Facebook

DavidMSmith
DavidMSmith
5 Min Read
SHARE

Last week, The Economist asked Cameron Marlow, Facebook’s in-house sociologist, to run some stats on the average number of friends a Facebook user has and how often they communicate with them. According to existing theory, the human brain limits social groups to about 150 (called the Dunbar number). Does this hold up when we look at the size of social groups on Facebook?

According to Dr Marlow, the average number of friends in a Facebook network is 120, which seems in the right range. Dr Marlow went further, and came up with some interesting stats about those groups: for example, the average man interacts with just seven of those friends, while the average woman interacts with ten. I’ll leave it to the sociologists to extrapolate what that might mean, but it did strike me as interesting that aggregated analysis of the Facebook data set can shed light on some pretty interesting questions in all sorts of fields. 
But what about going beyond passive analysis of social network data? What about experiments?

We know Facebook uses R now to analyze experiments, and I’m pretty sure experiments are conducted already with advertising: show ad A to a sample of 1,000 prospects, show ad B to a mat…

Last week, The Economist asked Cameron Marlow, Facebook’s in-house sociologist, to run some stats on the average number of friends a Facebook user has and how often they communicate with them. According to existing theory, the human brain limits social groups to about 150 (called the Dunbar number). Does this hold up when we look at the size of social groups on Facebook?

More Read

big data scientists build bridges
Big Data Scientists Are Bridge Builders
Salesforce is getting smarter
Customer Data Quality: What Is the Value-at-Risk?
Confused on how to measure voice quality after all? Here is the answer – signal + noise + speech model + analytics = state-of-the-art approach!
A demo of Swype, a new innovation in text entry that recently…
According to Dr Marlow, the average number of friends in a Facebook network is 120, which seems in the right range. Dr Marlow went further, and came up with some interesting stats about those groups: for example, the average man interacts with just seven of those friends, while the average woman interacts with ten. I’ll leave it to the sociologists to extrapolate what that might mean, but it did strike me as interesting that aggregated analysis of the Facebook data set can shed light on some pretty interesting questions in all sorts of fields. 
But what about going beyond passive analysis of social network data? What about experiments?

We know Facebook uses R now to analyze experiments, and I’m pretty sure experiments are conducted already with advertising: show ad A to a sample of 1,000 prospects, show ad B to a matched sample of another 1000, and you can answer a lot of interesting questions.  Which ad is more successful overall (as measured in clicks)?.  What demographic qualities, social connections, or online behavior of the user makes an ad more or less successful?  

But it’s intriguing to think of the possibilities in extending these experiments beyond marketing into scientific domains. Behavioral psychology is a field that immediately comes to mind: rather than running behavioral experiments on broke grad students in a lab, what about selecting a sample of active users on Facebook and running the experiment via an app?  (Added bonus: the conclusions of the experiment apply to a broader group than just broke grad students, unlike most behavioral psychology studies these days.) And given the enormous size of Facebook’s user base — more than 50 million users in North America alone — perhaps this concept could even be extended into behavioral economics to get information on some of the pressing questions of the day.  If the stimulus checks were handed out via Facebook rather than by the IRS, we could maybe get some real information about whether they actually stimulate the economy?

Of course, for any of this to happen Facebook would have to allow independent researchers access to their users and data, and Facebook users are rightly concerned about their privacy. In fact, Facebook recently announced that it is now asking their users for input on how their data should be used. In the same way that drivers are asked whether their organs can be made available for transplant in the event of a fatal accident, perhaps Facebook should be asking their users if they want to make their social data available to science.
From http://blog.revolution-computing.com/

TAGGED:economicsrsocial media
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How to make a progress bar in R

2 Min Read

R/Finance 2009 roundup

8 Min Read

Pink Floyd, Seinfeld, and Extremes in Customer Service

3 Min Read

Book Review: Trust Agents

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?