By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Conceptualizing Learning Error
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Conceptualizing Learning Error
Predictive Analytics

Conceptualizing Learning Error

Editor SDC
Last updated: 2009/03/01 at 11:03 PM
Editor SDC
5 Min Read
SHARE

When you are trying to find the correct equation to model and predict financial data, you will always have some error. If you are using regression to predict the next period’s return, you will probably measure the accuracy by mean squared error (MSE).

Error can be broken down into two components, and these two components can be interpreted as the sources of the error. Error = Bias + Variance

1) Bias is the error incurred by the expected prediction relative to the optimal/true prediction (Bias = E[y]-f(x), where f(x) is the true prediction and y is the approximation).
For example, using a 1st degree polynomial (a line) to approximate a 2nd degree polynomial (a parabola) will intrinsically have some bias error because a line cannot match a polynomial at all points.

2) Variance is the average error compared to expected prediction (Var = E[(y-E[y])^2]).
For example, if you only have 2 two sample data points, the function class of all 1st degree polynomials (ax+b) containing those two points will have no variance because only one line can go through the two points. However, the function class of all 2nd degree polynomials (ax2+bx+c) will have higher variance because there are infinite parab…

More Read

predictive analytics helps Albanian bitcoin investors

Albanian Bitcoin Investors Tap the Power of Predictive Analytics

Predictive Analytics Improves Trading Decisions as Euro Rebounds
Can Predictive Analytics Help Traders Navigate Bitcoin’s Volatility?
Perks of Predictive Analytics for Businesses Big and Small
How can CIOs Build Business Value with Business Analytics?


When you are trying to find the correct equation to model and predict financial data, you will always have some error. If you are using regression to predict the next period’s return, you will probably measure the accuracy by mean squared error (MSE).

Error can be broken down into two components, and these two components can be interpreted as the sources of the error. Error = Bias + Variance

1) Bias is the error incurred by the expected prediction relative to the optimal/true prediction (Bias = E[y]-f(x), where f(x) is the true prediction and y is the approximation).
For example, using a 1st degree polynomial (a line) to approximate a 2nd degree polynomial (a parabola) will intrinsically have some bias error because a line cannot match a polynomial at all points.

2) Variance is the average error compared to expected prediction (Var = E[(y-E[y])^2]).
For example, if you only have 2 two sample data points, the function class of all 1st degree polynomials (ax+b) containing those two points will have no variance because only one line can go through the two points. However, the function class of all 2nd degree polynomials (ax2+bx+c) will have higher variance because there are infinite parabolas that can be strung through two points. Therefore you will have higher generalization error when you test on out-of-sample data. Here’s a picture of both examples, focus on the 1st order and 50th order, clearly both will have high prediction error:

source

Now that I’ve covered the intuition, here’s the derivation of Bias and Variance from MSE, working backwards, with justifications for each step (click to enlarge):

The bias-variance tradeoff is a fundamental, intrinsic challenge for machine learning. If you are using a neural network, you will have to deal with very high variance; more nodes = more variance + less bias. If you are using linear regression, you will have to accept very high bias.

I have glossed over noisy data, which makes the decomposition MSE = Bias + Var + Noise. However, I think it’s more interesting to imagine that noise doesn’t exist, and actually we just don’t have a good enough model yet. For example, you could call a coin flip random, but I think it’s deterministic based on launch velocity, air resistance, wind, etc and we just don’t have the capability to measure and predict these complicating factors. That’s a philosophical question. Of course treating un-model-able factors as noise is a very useful simplifying assumption. Google “bias variance” for further info and more on adding in a noise factor if you’re interested.

I think next I will do a short series on the three sources of overfitting/data snooping procedural flaws: training on the test data, survivorship bias, and overfitting the out-of sample test set. The last is the most challenging to watch out for and the least well-known.

Please leave comments or corrections on bias/variance or anything else.

Editor SDC March 1, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

predictive analytics helps Albanian bitcoin investors
Blockchain

Albanian Bitcoin Investors Tap the Power of Predictive Analytics

9 Min Read
benefits of data analytics for financial management
Predictive Analytics

Predictive Analytics Improves Trading Decisions as Euro Rebounds

10 Min Read
predictive analytics can help bitcoin traders predict future price movements
Blockchain

Can Predictive Analytics Help Traders Navigate Bitcoin’s Volatility?

8 Min Read
predictive analytics
Predictive Analytics

Perks of Predictive Analytics for Businesses Big and Small

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?