Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Expert Panel on Challenges and Solutions
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Expert Panel on Challenges and Solutions
Business IntelligenceCRMData MiningPredictive Analytics

Expert Panel on Challenges and Solutions

JamesTaylor
JamesTaylor
3 Min Read
SHARE

Copyright © 2009 James Taylor. Visit the original article at Expert Panel on Challenges and Solutions.Syndicated from Smart Data Collective
This session was a panel discussion on the cross-industry challenges and solutions in predictive analytics. Panel sessions are tough to blog so here are some highlights.

More and more analysts are having to do their own extract, […]


Copyright © 2009 James Taylor. Visit the original article at Expert Panel on Challenges and Solutions.

Syndicated from Smart Data Collective

More Read

data mining is game changer for small businesses
Perform Data Mining With Web Scrapers to Track Prices
Analytics Ascendant, Part 2: The Limits of Predictive Modeling
Boston TDWI Chapter Meeting (updated agenda)
NoSQL overview for all us “SQL” folks
Dynamic Infrastructure for a Smarter Planet (via IBMSocialMedia)

This session was a panel discussion on the cross-industry challenges and solutions in predictive analytics. Panel sessions are tough to blog so here are some highlights.

  • More and more analysts are having to do their own extract, transform, load work to access databases so having modeling tools that handle this, rather than requiring IT to do it, is helpful.
  • It’s really important to match how people work to how they can work with predictive models – incorporate the predictive scores into decisions they already make. Use them to prioritize or assign, for instance, to start with.
  • Experience in one industry, like credit card fraud, may not play well in another industry and techniques used as well as the way success is described/reported must vary appropriately.
  • Never underestimate the problems in data or the value of cleaning it up before modeling. Clean, valid data is hugely valuable and doing a good job of linking and matching records is particularly important.
  • Can be an over-focus on algorithm selection when simple, structured, disciplined techniques will often work as well. Not only that but the hunt for new techniques causes problems with overfitting and with lack of validation rigor.
  • Outliers and extreme events can really throw off measures – if a large outlier is predicted well then it can make the model look more predictive than it really is.
  • Essential to challenge your assumptions. Don’t get caught out by a single failed assumption.
  • Putting models to work – putting them into decisions – requires organizational change and management to make sure people aren’t threatened by it and understand what to do it. Essential to wrap business rules around the models and make it work in a business context.
  • Always be suspicious of any model you build – challenge it, disprove it, try and uncover problems. Why, why, why.
  • Implicit assumptions can be tough to find and most are found when a test fails. When a test fails therefore, figure out why as there could be a bad assumption in there that caused the failure.
Previous Next


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

BI Business Value – Timeliness or Consistency, Part 2

4 Min Read

Data Mining Blog: Neural Market Trends

2 Min Read

Big Data Analytics Versus Your Own Lying Eyes

0 Min Read

Breaking Up (Cartoon)

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?