By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The Push and Pull of Data Integration
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > The Push and Pull of Data Integration
Business Intelligence

The Push and Pull of Data Integration

EvanLevy
Last updated: 2009/02/19 at 9:28 PM
EvanLevy
4 Min Read
SHARE

In my last blog post, I described the reality of so-called analytical data integration, which is really just a fancy name for ETL. Now let’s talk about so-called operational data integration. I’m assuming that when the vendors talk about this, it’s the same thing as “data integration for operational systems.” Most business applications use point-to-point solutions to retrieve and integrate data for their own specific processing needs. This is ETL in reverse: it’s a “pull” process as opposed to a “push” process.Unfortunately this involves a lot of duplicate processing for people to access individual records from source systems. And like…

In my last blog post, I described the reality of so-called analytical data integration, which is really just a fancy name for ETL. Now let's talk about so-called operational data integration. I'm assuming that when the vendors talk about this, it's the same thing as "data integration for operational systems." Most business applications use point-to-point solutions to retrieve and integrate data for their own specific processing needs. This is ETL in reverse: it's a "pull" process as opposed to a "push" process.

Unfortunately this involves a lot of duplicate processing for people to access individual records from source systems. And like their analytical brethren, the moment a source system changes, there is exponential work necessary to support the new modification. Multiply this by thousands of data elements and dozens of source systems, you’ll find a farm of silos and hundreds (if not thousands) of data integration jobs. It's not an uncommon problem.

More Read

ai in ppc advertising

5 Proven Tips for Utilizing AI with PPC Advertising in 2023

5 Ways AI Technology Has Disrupted Website Development
Fortifying Enterprise Digital Security Against Hackers Weaponizing AI
10 Ways How Artificial Intelligence Is Changing the Content Writing Landscape
How IoT Can Be Connected to Business Intelligence

In most BI environments we begin with a large batch data movement process. We build our ETL so it can occur overnight. But our data volumes are such that overnight isn’t enough. So the next evolution is building "trickle load" ETL. The issue here is that data integration is less about how the data is used as it is when the data is needed and the level of data quality. Most operational systems don’t clean the data, they just move it. And most ETL jobs for data warehouses will standardize the formatting but they won’t change the values. (And if they do fix the values, they don’t communicate those changes back to the source systems.)

If I have specialized data needs I should be building specialized integration logic. If I have commodity or standard needs for data that everyone uses, the data should be highly cleansed.

So it's not about analytical versus operational data integration. It's not even about how the data is used. It's really about one-way versus bi-directional data provisioning. As usual, the word integration is used too loosely. In either case, the presumption that the target is a relational database is naïve. And whether it's for analytical or operational integration is beside the point.

Link to original post

EvanLevy February 19, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

ai in ppc advertising
Artificial Intelligence

5 Proven Tips for Utilizing AI with PPC Advertising in 2023

10 Min Read
ai in web design
Artificial Intelligence

5 Ways AI Technology Has Disrupted Website Development

7 Min Read
Digital Security From Weaponized AI
Security

Fortifying Enterprise Digital Security Against Hackers Weaponizing AI

11 Min Read
AI-powered content writing tools
Artificial Intelligence

10 Ways How Artificial Intelligence Is Changing the Content Writing Landscape

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?