By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: PAW: Predictive modeling and today’s growing data challenges
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > PAW: Predictive modeling and today’s growing data challenges
Predictive Analytics

PAW: Predictive modeling and today’s growing data challenges

JamesTaylor
Last updated: 2009/02/19 at 6:38 PM
JamesTaylor
6 Min Read
SHARE

Live from Predictive Analytics World

Matt Kramer of Axciom and Jun Zhong of Wells Fargo discussed some of the challenges presented by data in the context of predictive models. Matt began by discussing some of the reasons for modeling – reducing costs, avoiding simplistic decisioning, predict attritition, optimize marketing spend etc. Predictive models help by ranking based on probabilities.

Creating a suitable modeling sample requires enough records (10,000-15,000) that are recent enough to be relevant (especially when times are changing fast). Axciom’s data shows that 1,200 or more instances of what it is you are trying to predict gives you a robust model. Focusing on mature/complete data is important, however, and this has to be balanced against timeliness. Appending internal or external data can make a big difference to quality of models.These samples must be checked carefully for problems. Sample bias can be damaging, so using a model on data that looks like the sample is key.

Jun discussed some marketing business issues related to data. Their two main challenges are to recognize likely purchasers and then to recognize likely purchasers that will be influenced by an action or tre…

More Read

predictive analytics for amazon pricing

Using Predictive Analytics to Get the Best Deals on Amazon

Predictive Analytics Helps New Dropshipping Businesses Thrive
Data Mining Technology Helps Online Brands Optimize Their Branding
Promising Benefits of Predictive Analytics in Asset Management
What Role Does Big Data Have on the Deep Web?


Live from Predictive Analytics World

Matt Kramer of Axciom and Jun Zhong of Wells Fargo discussed some of the challenges presented by data in the context of predictive models. Matt began by discussing some of the reasons for modeling – reducing costs, avoiding simplistic decisioning, predict attritition, optimize marketing spend etc. Predictive models help by ranking based on probabilities.

Creating a suitable modeling sample requires enough records (10,000-15,000) that are recent enough to be relevant (especially when times are changing fast). Axciom’s data shows that 1,200 or more instances of what it is you are trying to predict gives you a robust model. Focusing on mature/complete data is important, however, and this has to be balanced against timeliness. Appending internal or external data can make a big difference to quality of models.These samples must be checked carefully for problems. Sample bias can be damaging, so using a model on data that looks like the sample is key.

Jun discussed some marketing business issues related to data. Their two main challenges are to recognize likely purchasers and then to recognize likely purchasers that will be influenced by an action or treatment – who is proactive (will buy anyway) and who is reactive (who will buy only in response).

Propensity to Purchase models predict who is likely to buy, allowing the offers to be made only to those likely to buy. A second model, Propensity to Influence, predicts how likely someone will be influenced by a specific promotion.

To develop this second model you need to have both a treatment and a control group to see what response you get. This allows you to find the buyers in both groups and then to see what kind of people did not buy in the control group but did buy in the treatment group – these are those who only purchased because of the treatment. From this you can build the propensity to influence model. Building these models requires all the usual data cleansing, transformation, initial and ongoing validation etc.

Matt came back to talk about some challenges he sees. The ability to demonstrate incremental value and to persuade business users that modeling is necessary – that just specifying the rules explicitly would not be as useful. There are also growing restrictions on the use of certain data as a result of legal worries.

  • As other speakers have noted, it is really important to have clean control groups so that comparisons are both real and believable. If you can’t show real business benefits in terms of total value/total cost then the “lift” of the model doesn’t matter. It can be hard for companies to hold people out to keep a really clean control group – want to market to everyone.
  • Criteria – rules-  tend to be easier to understand and implement. Showing the value of the model is critical. Models tend to produce more optimal results and generally does not exclude whole groups but rather ranks them based on weighted attributes. Matt was trying to make it seem like these are either / or but of course they are not – they can and should be used in conjunction. Models can help make decision criteria better.
  • Restrictions on use of certain attributes are designed to prevent discrimination. Not much you can do about this except keep working on the modeling to find other ways to build the model. One example he gave had 55% of attributes removed dropping the lift from 3x to 1.2x. New attributes and more careful segmentation rebuilt the lift somewhat but not completely.

More posts and a white paper on predictive analytics and decision management at decisionmanagementsolutions.com/paw

TAGGED: banking, data, data mining, paw, predictive analytics, predictive analytics world, propensity models
JamesTaylor February 19, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence
data Analytics instagram stories
Data Analytics Helps Marketers Make the Most of Instagram Stories
Analytics
data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

predictive analytics for amazon pricing
Predictive Analytics

Using Predictive Analytics to Get the Best Deals on Amazon

8 Min Read
predictive analytics in dropshipping
Predictive Analytics

Predictive Analytics Helps New Dropshipping Businesses Thrive

12 Min Read
data mining
Data Mining

Data Mining Technology Helps Online Brands Optimize Their Branding

7 Min Read
analyst,women,looking,at,kpi,data,on,computer,screen
Predictive Analytics

Promising Benefits of Predictive Analytics in Asset Management

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?