Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Sentiment Mining for Amazon’s Kindle
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Sentiment Mining for Amazon’s Kindle
Uncategorized

Sentiment Mining for Amazon’s Kindle

ThemosKalafatis
ThemosKalafatis
4 Min Read
SHARE
Following the post on Clustering the thoughts of Twitter users, it is time to look at another example where Twitter can be used. So I decided to analyze –  just -1054 tweets that are about Amazon’s e-reader kindle to see what I could come up with.

My goal was not to classify between positive or negative sentiment but to extract the general “buzz” about the product by means of clustering analysis. After extracting the tweets that contain the word “kindle” I continued in removing non-relevant information (such as tinyurl links) by using regex expressions.

Next, it was time to understand the data and a good way to do this is to look at word frequencies using TextStat. Here is what I came up with :


Top on the word frequency list are the usual suspects…  

Following the post on Clustering the thoughts of Twitter users, it is time to look at another example where Twitter can be used. So I decided to analyze –  just -1054 tweets that are about Amazon’s e-reader kindle to see what I could come up with.

My goal was not to classify between positive or negative sentiment but to extract the general “buzz” about the product by means of clustering analysis. After extracting the tweets that contain the word “kindle” I continued in removing non-relevant information (such as tinyurl links) by using regex expressions.

Next, it was time to understand the data and a good way to do this is to look at word frequencies using TextStat. Here is what I came up with :


Top on the word frequency list are the usual suspects: “I”, “and”, “to”, but also “kindle”, “kindle2” and “amazon”, which is something that was expected. Now, let’s see what are some of the words that do not occur frequently:


Here appears a fact that requires attention: Text miners use stop-word lists to remove the most frequent words but they also remove words that do not occur frequently. The table above shows that a non-frequently occurring word is disappointed and if we had chosen to omit words of a specific frequency range  – such as less than 3 – we could loose this important information. So caution is needed.

After running the analysis, I came up with 20 different clusters of similar “thinking”. Note that we are not only interested in which those clusters are but also – more importantly – to the proportion of cases that each cluster contains (see previous post). Some of the examples of clusters found are :

1) A cluster of users that are questioning the usefulness of the product
2) Excited users
3) Users that are happy about the text-to-speech recognition of the product
4) Text-to-speech recognition and potential copyright issues

Twitter is a great source for sentiment extraction but one problem is the fact that people are re-tweeting the same news (” The new Kindle 2 is out”) or they tweet about similar information from various tech news websites.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Analysts Realize There is A Downturn!

4 Min Read

The Insanity of Change Management

5 Min Read

Are ITIL ‘Refreshes’ Enough to Address Adoption Issues?

6 Min Read

SOA may be taking the risk out of cloud computing

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?