Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Sentiment Mining for Amazon’s Kindle
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Sentiment Mining for Amazon’s Kindle
Uncategorized

Sentiment Mining for Amazon’s Kindle

ThemosKalafatis
ThemosKalafatis
4 Min Read
SHARE
Following the post on Clustering the thoughts of Twitter users, it is time to look at another example where Twitter can be used. So I decided to analyze –  just -1054 tweets that are about Amazon’s e-reader kindle to see what I could come up with.

My goal was not to classify between positive or negative sentiment but to extract the general “buzz” about the product by means of clustering analysis. After extracting the tweets that contain the word “kindle” I continued in removing non-relevant information (such as tinyurl links) by using regex expressions.

Next, it was time to understand the data and a good way to do this is to look at word frequencies using TextStat. Here is what I came up with :


Top on the word frequency list are the usual suspects…  

Following the post on Clustering the thoughts of Twitter users, it is time to look at another example where Twitter can be used. So I decided to analyze –  just -1054 tweets that are about Amazon’s e-reader kindle to see what I could come up with.

My goal was not to classify between positive or negative sentiment but to extract the general “buzz” about the product by means of clustering analysis. After extracting the tweets that contain the word “kindle” I continued in removing non-relevant information (such as tinyurl links) by using regex expressions.

Next, it was time to understand the data and a good way to do this is to look at word frequencies using TextStat. Here is what I came up with :


Top on the word frequency list are the usual suspects: “I”, “and”, “to”, but also “kindle”, “kindle2” and “amazon”, which is something that was expected. Now, let’s see what are some of the words that do not occur frequently:


Here appears a fact that requires attention: Text miners use stop-word lists to remove the most frequent words but they also remove words that do not occur frequently. The table above shows that a non-frequently occurring word is disappointed and if we had chosen to omit words of a specific frequency range  – such as less than 3 – we could loose this important information. So caution is needed.

After running the analysis, I came up with 20 different clusters of similar “thinking”. Note that we are not only interested in which those clusters are but also – more importantly – to the proportion of cases that each cluster contains (see previous post). Some of the examples of clusters found are :

1) A cluster of users that are questioning the usefulness of the product
2) Excited users
3) Users that are happy about the text-to-speech recognition of the product
4) Text-to-speech recognition and potential copyright issues

Twitter is a great source for sentiment extraction but one problem is the fact that people are re-tweeting the same news (” The new Kindle 2 is out”) or they tweet about similar information from various tech news websites.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Are You Among the 76% Adding Value Online?

4 Min Read
Image
Uncategorized

How Your Sensor Data and The Internet of Things Can Save You a Lot of Money

7 Min Read

Microsoft Shows Off More than ERP with Dynamics

11 Min Read

JD Williams ; Company Selects Teradata

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?