Detecting the Madoff Effect: Methodology for Fraud in Hedge Funds

December 15, 2008
54 Views

As a result of the recent Bernard Madoff fraud scheme, pension funds and corporate finance managers have been put on the defensive, wondering how to detect this type of “under the radar” deceptive scam. The depth of the fraud in the case of Bernard Madoff and his ability to engage in a $50 billion undetected scheme employing “serial correlation” demonstrated the vulnerability of financial institutions to trusted individuals operating inside the


As a result of the recent Bernard Madoff fraud scheme, pension funds and corporate finance managers have been put on the defensive, wondering how to detect this type of “under the radar” deceptive scam. The depth of the fraud in the case of Bernard Madoff and his ability to engage in a $50 billion undetected scheme employing “serial correlation” demonstrated the vulnerability of financial institutions to trusted individuals operating inside the security model. Bernard L. Madoff Investment Securities LLC (“Madoff”) engaged in a ponzi or pyramid fraudulent scheme in which investors were paid interests not from actual investments but from the funds deposited by other investors. But being on the defensive is not the ideal solution, as it forces financial institutions into a reactive mode, always trying to catch-up with the perpetrators, who somehow remain one step ahead. We would like to suggest a more proactive approach and corresponding methodology for detecting fraud in hedge funds.

Madoff was able to hide his scheme using a “serial correlation” reporting scheme. A serial correlation is a term used by MIT professor and hedge fund theorist Andrew Lo to describe the degree to which each month’s returns in a fund mirror the results of the month before. Dr. Lo’s theory is that is a hedge fund has a nice smooth line in its rate of return every month. Upon close examination, any variation to the “smoothness” of the line constitutes a red flag, which should be look upon more carefully.

In the last year corporate finance departments, financial institutions, as well as public and private pension fund portfolios have already lost about 33% of their values due to overleveraged investment banks, the housing and credit crises. An effective, (no more than 1 to 3 weeks) and cost efficient proactive methodology to detect the Madoff effect in the hedge funds would be to apply the following methodology in the specified order to the relevant data available to you:

  • Link Analysis – Use link analysis to determine in the network Madoff is categorized by, and create a subset of that network of hedge funds.
  • Predictive Modeling – Use predictive modeling to create a score of all the hedge funds in your subset. Use Madoff’s variables as your training data.
  • Clustering Analysis – Perform a cluster analysis which includes among other variables the predictive score. Since the predictive score is a multidimensional variable when used with one-dimensional or “flat” variables you will obtain a binocular vision (or binocular summation) of your analysis and increase by 1.4 times the ability to detect the serial correlation. See, Improving Search Engine Optimization by Incorporating Predictive Analytics at http://atomai.blogspot.com/2008/12/improving-search-engine-optimization-by.html

    For verification of the analysis you could use the following factors:

  • The reputation of the independent auditors of the hedge fund identified through this methodology;
  • Control Chart using standard deviation of the yearly returns over a 3-5 year period (exclude the current year);
  • The ratio of total number of employees to the total amount of investments.

    Contact Alberto Roldan at atomanalytics@gmail.com or Sean Suskind at seansuskind@gmail.com

You may be interested

Big Data Revolution in Agriculture Industry: Opportunities and Challenges
Analytics
69 shares1,955 views
Analytics
69 shares1,955 views

Big Data Revolution in Agriculture Industry: Opportunities and Challenges

Kayla Matthews - July 24, 2017

Big data is all about efficiency. There are many types of data available, and many ways to use that information.…

How SAP Hana is Driving Big Data Startups
Big Data
298 shares3,201 views
Big Data
298 shares3,201 views

How SAP Hana is Driving Big Data Startups

Ryan Kh - July 20, 2017

The first version of SAP Hana was released in 2010, before Hadoop and other big data extraction tools were introduced.…

Data Erasing Software vs Physical Destruction: Sustainable Way of Data Deletion
Data Management
156 views
Data Management
156 views

Data Erasing Software vs Physical Destruction: Sustainable Way of Data Deletion

Manish Bhickta - July 20, 2017

Physical Data destruction techniques are efficient enough to destroy data, but they can never be considered eco-friendly. On the other…