Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    payment methods
    How Data Analytics Is Transforming eCommerce Payments
    10 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Yes, you need more than just R for Big Data Analytics.
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Yes, you need more than just R for Big Data Analytics.
AnalyticsR Programming LanguageStatistics

Yes, you need more than just R for Big Data Analytics.

DavidMSmith
DavidMSmith
4 Min Read
SHARE

Douglas Merrill, former CIO/VP of Engineering at Google, writes in Forbes about using the R language for data analysis:

Most folks with math-oriented graduate degrees will have written something in R, a non-commercial option for your big data analysis.  So, great graduates from great graduate schools know great tools.

Douglas Merrill, former CIO/VP of Engineering at Google, writes in Forbes about using the R language for data analysis:

Most folks with math-oriented graduate degrees will have written something in R, a non-commercial option for your big data analysis.  So, great graduates from great graduate schools know great tools.

His post is titled ‘R Is Not Enough For “Big Data”‘, and you might be surprised to learn that I agree that title, although for a different reason. Douglas’s point — and it’s a valid one — is that simply pumping data through any software tool, without an understanding of the problem you’re trying to solve and how statistical models apply to it, can lead to getting the wrong answers to the wrong questions:

If you ask the wrong question, you will be able to find statistics that give answers that are simply wrong (or, at best, misleading).

On net, having a degree in math, economics, AI, etc., isn’t enough. Tool expertise isn’t enough.  You need experience in solving real world problems, because there are a lot of importat limitations to the statistics that you learned in school.  Big data isn’t about bits, it’s about talent.

This is a great illustration of why the data science process is a valuable one for extracting information from Big Data, because it combines tool expertise with statistical expertise and the domain expertise required to understand the problem and the data applicable to it. He’s right that you need data science talent and software to solve problems with Big Data … and having software like R that supports the exploratory nature of the data science process is also critical.

But I also agree with the title for a different, technical reason: the R software is just one piece of software ecosystem — an analytics stack, if you will — of tools used to analyze Big Data. For one thing R isn’t a data store in its own right: you also need a data layer where R can access structured and unstructured data for analysis. (For example, see how you can use R to extract data from Hadoop in the slides from today’s webinar by Antonio Piccolboni.) At the analytics layer, you need statistical algorithms that work with Big Data, like those in Revolution R Enterprise. And at the presentation layer, you need the ability to embed the results of the analysis in reports, BI tools, or data apps.

So yes, Douglas is right: you need more than just R for Big Data. You also need a data layer, an analytics layer, and a presentation layer (all of which supports Big Data) … and you need Data Science skills to make sure you’re asking the right questions and getting appropriate answers.

Forbes: R Is Not Enough For “Big Data”

TAGGED:big datadomain expertise
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Analytics Big Data Exclusive
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Splunk: Bringing Big Data Analysis to the Rest of Us

5 Min Read
Machine Learning
Big DataData Mining

Big Data, Data Mining and Machine Learning: Deriving Value for Business

6 Min Read

3 Major Reasons VPN Can Improve Data Security

6 Min Read
machine learning books
ExclusiveMachine Learning

Top Machine Learning Books And Videos For Beginners And Professionals

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?