Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Wolfram/Alpha and the future of search
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > Wolfram/Alpha and the future of search
Exclusive

Wolfram/Alpha and the future of search

StephenBaker2
StephenBaker2
5 Min Read
SHARE

The New York Times article on the arm of my chair is about the plight of poor workers in South Africa. With a few key words, Google could help me find the article. But then it would be up to me to process the information. In the third paragraph, it tells of a woman who earns $36 a week, $21 less than the minimum wage. If the article were “computable,” I could ask it about minimum wage in South Africa, and a search engine, or whatever you want to call it, would answer: $57.

The New York Times article on the arm of my chair is about the plight of poor workers in South Africa. With a few key words, Google could help me find the article. But then it would be up to me to process the information. In the third paragraph, it tells of a woman who earns $36 a week, $21 less than the minimum wage. If the article were “computable,” I could ask it about minimum wage in South Africa, and a search engine, or whatever you want to call it, would answer: $57.

Stephen Wolfram, the physicist, author, entrepreneur and founder of the Wolfram/Alpha computational knowledge engine, was speaking at MIT last week about computational knowledge. In the past, computers could process only information in structured data bases. But the overwhelming majority of data we produce today is unstructured, most of it words. (Fix: Multimedia, too, of course, but here I’m focusing on words) Traditional search engines help us find documents in that mountain of words. But they do very little to distill those words into knowledge, or to answer our questions.

More Read

data annotation
Using Data Annotations for Quality Control Purposes
AI-Based Banking Loan Software Will Become Norm In 2022
How Countries And Corporations Are Waking Up To Benefits Of Blockchain
Algorithmic Trading Communities Show the Benefits of AI
Google’s Year in Local Search

The challenge in the coming years, Wolfram said, was to make more of these files and documents computable. That would enable systems like Wolfram/Alpha to digest them, and to use them to produce answers and analysis. He compared the transition ahead to one we’ve already been through. A couple of decades ago, most people used computers to create paper documents. It was such an improvement over typewriters.  But then we began to see the value in digital files. They could be emailed, forwarded, posted on the Web, cut-and-pasted (in the digital sense). And they could be searched. Documents on paper, by comparison, seemed marooned.

The next transition, according to Wolfram, will be to make written information computable. If a document isn’t formatted so that computers can read, summarize and extract information from it, it will seem like a dead end, he predicted. His team at Wolfram/Alpha is busy importing and curating large sets of data. From my experience on their “knowledge engine,” it appears that much of the data comes from the realm of facts and figures–population numbers, stock market performance, birthdays, etc. But the way Wolfram sees it, more of us will produce information in a style (or on templates) that will make it computable, and machines like his will eventually be able to answer all sorts of questions. In a sense, an early stage of this pre-processing is already happening: An entire industry is formatting Web pages to make them more searchable.

Still, the idea of knowledge organizing itself for machines, it seems to me, is a limited approach to to the problem. It’s akin to building game preserves. How can you be sure that your structured world reflects the truth in the wilds beyond the fences? The untamed world outside of Wolfram’s mathematical domain is the big and chaotic realm of language. There, Wolfram/Alpha appears handicapped. If you type even a moderately complex question into Wolfram/Alpha, such as “What is the largest university within 100 miles of Portland, Or?” it’s stumped. The system appears to have primitive language capabilities. No surprise then that Wolfram wants to world to make its information computable.

This leads me to wonder which approach is more likely to master knowledge. Will it be one that requires that knowledge be simplified and structured so that machines can digest it? Or will it be a linguistically-savvy system that can digest virtually anything? I’ll bet on the linguistic omnivores, including Google and IBM. The problem they face–mastering language–is a bear. Language is frightfully complex. But they’re making progress. And their approach requires less work from the public. That’s usually a winning formula.

 

TAGGED:googleibmsearch
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Tuning in to Google Music Search

5 Min Read
social data
AnalyticsBig DataExclusiveSocial DataSocial Media Analytics

Social Data on the Top 4 Social Media Channels: How They Use Each Other

4 Min Read

The (still) coming privacy boom

5 Min Read
google+ and big data analytics
AnalyticsBig DataExclusiveSocial DataSocial Media Analytics

Google+ Is After Your Friends with Big Data and Beautiful Photos

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?