Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Vector Computing, Who Is More Powerful, R Language or esProc?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > R Programming Language > Vector Computing, Who Is More Powerful, R Language or esProc?
R Programming Language

Vector Computing, Who Is More Powerful, R Language or esProc?

raqsoft
raqsoft
6 Min Read
SHARE

Do you find Vector Computing tiresome while using statistical computing tools? Here we go for a Vector Computing Comparison: R Language vs. esProc. To me, one of the most attractive features of R language and esProc is that their codes are both agile, that is, only requiring a few lines of codes to implement plentiful functions.

Do you find Vector Computing tiresome while using statistical computing tools? Here we go for a Vector Computing Comparison: R Language vs. esProc. To me, one of the most attractive features of R language and esProc is that their codes are both agile, that is, only requiring a few lines of codes to implement plentiful functions. For example, both of them allow for composing Vector Computing expression, simplify the judgment statements, extend the basic functions to the advanced ones, and support the generic type. In which, regarding the vector computing, they are characterized with the massive data processing through functions and operators, so as to avoid the loop statement. Users can benefit from 2 resulting advantages: first, easy to grasp for business experts and keep the learning cost low; second, easy to implement the parallel computation and improve the performance.

In order to show users the subtle differences between R and esProc on vector computing, we will go on with several examples below.

Firstly, let’s check the most basic functions like vector value getting and assigning. For example, get 5 values of vectors whose subscripts are from 5 to 10, and replace them with another 5 values.

More Read

Take the Predictive Analytics in the Cloud survey
Predictive Analytics World New York City Conference Announces Speaker Line-Up
Text Analytics for Telecommunications – Part 1
Real-Time Predictive Analytics with Big Data, and R
The R Graph Gallery Goes Social

R solution:
01    A1<-c(51,52,53,54,55,56,57,58,59,60)
02    A2<-A1[6:10]
03    A1[6:10]<-seq(1,5)

esProc solution:
A1    =[51,52,53,54,55,56,57,58,59,60]
A2    =A1(to(6,10))
A3    >A1(to(6,10))=to(1,5)

Comments: Both of them enable users to get and assign values easily with almost the same usage. However, subjectively, I prefer using the “:” of R language to represent the interval ranges. It looks more intuitive and agile.

Then, let’s compare them on the arithmetical operations of vector.

R solution:
04    A4<-c(1,2,3)
05    A5<-c(2,4,6)
06    A4*A5 # multiplying the vector, and the result is: [1] 2 8 18
07    A4+2    #adding the vector to the constant, and the result is: [1] 3 4 5
08    ifelse(A4>1,A4+2,A4-2) #conditional evaluate, and the result is: [1] -1 4 5
09    sum(A4)    #aggregate, sum up the vector member, and the result is:6
10    sort(A4,decreasing = TRUE)    #sort reversely, and the result is: 3 2 1

esProc solution:
A4    =[1,2,3]
A5    =[2,4,6]
A6    =A4**A5    ‘multiplying the vector, and the result is: 2 4 18
A7    =A4.(~+2)    ‘adding the vector to the constant, and the result is:3 4 5
A8    =A4.(if(~>1,~+2,~-2))    ‘conditional evaluate, and the result is:-1 4 5
A9    =A4.sum()    ‘aggregating, vector member sum up, and the result is:6
A10    =A4.sort(~:-1)    ‘reverse sorting, and the result is:3 2 1

Comments: As can be seen from the above, no matter the four arithmetic operations, aggregating, or sorting operations of vector, both R and esProc can implement it well, and their syntaxes are very close. One thing worthy of notice is that the code of esProc looks more “object-oriented”, while R is truly “object-oriented” judging from the bottom layer. The former is more suitable for direct use by business experts by themselves and popular with those from the common business sector, and the latter is more suitable for programmers to compile the extended package by themselves and more acceptable to those from the scientific expertise sector.

Let us check the vector computing on the structured data, such as computations based on the Orders table from the Northwind database:
Query the data with freightage from 200 to 300.
Query the order dated 1997.
Compute the intersection set of above-mentioned sets, i.e. data not only with freightage from 200 to 300 but also with orders placed in 1997.
Group the result from the previous step by EmployeeID, and average the freightage for each employee.

R solution:
02    A2<-result[result$Freight>=200 & result$Freight<=300,]
03    A304    A4<-result[result$Freight>=200 & result$Freight<=300 & format(result$OrderDate,’%Y’)==”1997″,]
05    A5<-tapply(A2$Freight,INDEX=A2$EmployeeID,FUN=mean)

esProc solution:
A2    =A1.select(Freight>=200 && Freight<=300 && year(OrderDate)==1997)
A3    =A1.select(year(OrderDate)==1997)
A4    =A3^A4
A5    =A4.group(EmployeeID;~.avg(Freight))

Comments: R is good at querying and make statistics in groups. However, as for the set operations, R is worse than esProc. In the above example of R, the result is obtained by an indirect means of query instead of any set operations.

R can only perform the set operations on simple vectors, for example, intersect(A2$Orderid,A3$Orderid), and cannot directly implement the set operation on the structured data like data.frame.

Of course, this is not to say that the R is not powerful in vector computing. In effect, R is easier to use than esProc in the aspect of matrix-related computation. For example, to seek the eigenvalue of matrix A, R users can simply use eigen(A), while esProc users are not provided with any functions for them to represent it directly. Judging from this aspect, it proves that esProc is more suitable for business computing, while R is better in handling the scientific computation.

In conclusion, considering the vector computing, both R and esProc demonstrate perfect performance in the basic computing. More specifically speaking, R is second to none in matrix computation, and esProc (download) beats R in handling the structured data.

TAGGED:esProcvector
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Simple Inter-row Computation: esProc Keeps It Simple!

7 Min Read

esProc Improves Text Processing: Fetching Data from a Batch of Files

6 Min Read

Using esProc to Compute the Online Time of Users [PART 2]

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?