Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Tackling Human Intelligence
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Text Analytics > Tackling Human Intelligence
AnalyticsText Analytics

Tackling Human Intelligence

Editor SDC
Editor SDC
3 Min Read
SHARE

I was drawn to the semantic web and semantic technologies because of the potential benefit to each of us.  There is no debate about the growing volumes of data – be that in our personal digitally recorded lives, our business lives or more generally. on the World Wide Web.  So tools/ solutions which assist in processing/analysing or making sense of some of this data seem attractive to me. Part of the challenge is trying to have software do some of the heavy lifting.

I was drawn to the semantic web and semantic technologies because of the potential benefit to each of us.  There is no debate about the growing volumes of data – be that in our personal digitally recorded lives, our business lives or more generally. on the World Wide Web.  So tools/ solutions which assist in processing/analysing or making sense of some of this data seem attractive to me. Part of the challenge is trying to have software do some of the heavy lifting.  Much of the data which is potentially subject to heavy lifting has originally been published for human consumption and is not ideally formatted for consumption by software.

So semantics has its place.  Can we deal with the ambiguity in the data?  In Australia a reference to football may mean ‘Australian Rules’ football, in England may mean ‘soccer’,  in Ireland my mean ‘Gaelic football’.  So if I have a piece of software doing some heavy lifting across the web to analyse performances of ‘football full backs’ during on the weekend of the third month in December 2009 my software may be confused – may mix up different codes, etc.  I may be able to define my search/query in great detail but perhaps the data as originally published does not provide the required clarity – risking ‘a question of semantics’.

I was quite taken by the piece ‘Paul Allen: the singularity is not near’ published this week in MIT’s Technology Review.  Ray Kurzweil’s thoughts on computer systems bypassing human intelligence in the near future are well known and documented.   Paul Allen and Mark Greaves argue strongly that Kurzweil is being over optimistic (depending on your viewpoint).  They include a number of examples from neuroscience and artificial intelligence arguing that we will be a long way sort of Kurzweil’s vision in 2045 – Kurzweil’s date.

More Read

Companies Struggle to Engage with Customers Digitally
Development of on-chip optical interconnects for future…
Big Data Buzz or Big Data Fuzz?
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Are You Transformed? The MIT Report on Analytics

Much of this took me back to the simplicity of what we are trying to achieve in semantics/ semantic web – the heavy lifting.  And it’s not proving very simple.  Yes, the search engines and various semantic tools are presenting improved, cross referenced, even multi-correlated data – but we have an awfully long way to go.

 

 

 

Tackling human intelligence is a post from: barryjogorman

TAGGED:AIsemantic analysis
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

2018 artificial intelligence stocks
Artificial IntelligenceExclusive

Things Worth Learning From 2018 Artificial Intelligence Projects

5 Min Read
ai in video streaming
ExclusiveNews

Is Your Internet Fast Enough for Streaming AI Generated Content?

6 Min Read
can deep learning improve construction
ExclusiveMachine Learning

Can Deep Learning Improve Construction Snag Lists?

9 Min Read
online data
Artificial IntelligenceExclusive

3 Incredibly Common Online Course Creation Mistakes with AI

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?