Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: System Agility, Data Agility
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > System Agility, Data Agility
Best PracticesData Quality

System Agility, Data Agility

matthewhurst
matthewhurst
3 Min Read
SHARE

The term agility has become a standard in the software industry to denote the ability of an organization to modify their product quickly, generally in small iterative steps, to respond to customer feedback, competitive landscape development, etc. The agility of a software product can be measured in terms of the latency between a motivating design change and the availability of that change to the user, moderated by some degree of quality assurance, regression testing and so on.

The term agility has become a standard in the software industry to denote the ability of an organization to modify their product quickly, generally in small iterative steps, to respond to customer feedback, competitive landscape development, etc. The agility of a software product can be measured in terms of the latency between a motivating design change and the availability of that change to the user, moderated by some degree of quality assurance, regression testing and so on. When we see Facebook’s UI change week by week we might say that they are an agile operation. When we see Google go back and forth with their local user experience we might say that they are agile.

An agile engineering environment depends on core and deep investments in certain processes and rigour. It is imperative that engineers can build the software, run a battery of regression tests, rely on the semantics of an API via a strong suite of unit tests and so on.

That being said, there is another aspect of agility that is becoming more and more relevant: data agility. It is quite possible, and somewhat common, to build data processing systems which depend on some specific distribution of features in the input data. This can particularly be the case with supervised machine learning systems. Given a set of inputs, the learning algorithm models distributions in those inputs in order to set parameters which at run time can make predictions. While you may have an agile engineering practice for the code, dependencies on qualities and assumptions regarding the input can put you in a position that prevents agility with respect to the data.

Data agility is acheived when the system is designed to either be independent of certain types of qualities of the input data, or when there are well defined processes, tests and analytical tools that radically reduce the time from identifying a new data source to shipping it in production.

System agility is not data agility, and aiming for data agility requires an upfront investment in tools specifically for that purpose.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive
sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

BI Clarity

2 Min Read

Increasing “Jointness” and Reducing Duplication in DoD Intelligence

25 Min Read

Driving Adoption of Social Collaboration Tools

6 Min Read
protect your data from your ISP
Best PracticesBig DataData ManagementExclusiveGDPRITPolicy and GovernancePrivacySecurity

Try These Tips On How To Protect Your Data From Your ISP

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?