Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Question of User Expectations
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > A Question of User Expectations
Business Intelligence

A Question of User Expectations

Daniel Tunkelang
Daniel Tunkelang
5 Min Read
SHARE

Ideally, a search engine would read the user’s mind. Shy of that, a search engine should provide the user with an efficient process for expressing an information need and then provide the user with results relevant to the that need.

From an information scientist’s perspective, these are two distinct problems to solve in the information seeking process: establishing the user’s information need (query elaboration) and retrieving relevant information (information retrieval).

Ideally, a search engine would read the user’s mind. Shy of that, a search engine should provide the user with an efficient process for expressing an information need and then provide the user with results relevant to the that need.

More Read

ai drives benefits of algorithmic trading
AI Technology Leads to Impressive Benefits with Algorithmic Trading
Value Index Reveals Red Hot Business Intelligence Vendors for 2012
Disappointed for MySQL
Google and corporate espionage
Postgres vs. MongoDB for Storing JSON Data – Which Should You Choose?

From an information scientist’s perspective, these are two distinct problems to solve in the information seeking process: establishing the user’s information need (query elaboration) and retrieving relevant information (information retrieval).

When open-domain search engines (i.e., web search engines) went mainstream in the late 1990s, they did so by glossing over the problem of query elaboration and focusing almost entirely on information retrieval. More precisely, they addressed the query elaboration problem by requiring users to provide reasonable queries and search engines to infer information needs from those queries. In recent years, there has been more explicit support for query elaboration–most notably in the form of type-ahead query suggestions (e.g., Google Instant). There have also been a variety of efforts to offer related queries as refinements.

But even with such support, query elaboration typically yields an informal, free-text string. All vocabularies have their flaws, but search engines compound the inherent imprecision of language by not even trying to guide users to a common standard. At best, query suggestion nudges users towards more popular–and hopefully more effective–queries.

In contrast, consider closed-domain search engines that operate on curated collections, e.g., the catalog search for an ecommerce site. These search engines often provide users with the opportunity to express precise queries, e.g., black digital cameras for under $250. Moreover, well-designed sites offer users faceted search interfaces that support progressive query elaboration through guided refinements.

Many (though not all) closed-domain search engines have an advantage over their open-domain counterparts: they can rely on manually curated metadata. The scale and heterogeneity of the open web defies human curation. Perhaps we’ll reach a point when automatic information extraction offers quality competitive with curation, but we’re not there yet. Indeed, the lack of good, automatically generated metadata has been cited as the top challenge facing those who would implement faceted search for the open web.

What can we do in the mean time? Here is a simple idea: use a closed-domain search engine do guide users to precise queries, and then apply the resulting queries to the open web. In other words mash up the closed and open collections.

Of course, this is easier said that done. It is not at all clear if or how we can apply a query like “black digital cameras for under $250″ to a collection that is not annotated with the necessary metadata. But we can certainly try. And our ability to perform information retrieval from structured queries will improve over time–in fact, it may even improve more quickly if we can start to assume that users are being guided to precise, unambiguous queries.

Even though result quality would be variable, such an approach would at least eliminate a source of uncertainty in the information seeking process: the user would be certain of having a query that accurately represented his or her information need. That is no small victory!

I fear, however, that users might not respond positively to such an interface. Given the certainty that a query accurately represents his or her information need, a user is likely to have higher expectations of result quality than without that certainty. Retrieval errors are harder to forgive when the query elaboration process eliminates almost any chance of misunderstanding. Even if the results were more accurate, they might not be accurate enough to satisfy user expectations.

As an HCIR evangelist, I am saddened by this prospect. Reducing uncertainty in any part of the information seeking process seems like it should always be a good thing for the user. I’m curious to hear what folks here think of this idea.

TAGGED:search
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Quick Visualization of irs.gov Search Queries

3 Min Read

SIGIR: Meet the Who’s Who of Search and Information Retrieval

5 Min Read

Findability Inside the Firewall – Still Trying to Find the Information We Need

22 Min Read

Why Search Engine Rank is Important

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?